Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Design and implementation of a wind turbine emulator using an induction motor and direct current machine
The study deals with the application details and validation of a wind turbine emulator (WTE) consisting of a user interface, 1.5kW squirrel-cage induction motor (IM) and separately excited direct current machine (DCM). To this end, an induction motor and direct current machine are mechanically coupled to behave like wind turbine. Thus, by controlling the asynchronous motor over wind data, the shaft of the asynchronous motor rotates like the high turbine shaft of the wind turbine and emulates the wind turbine in the laboratory environment. The user interface includes 12 commercial wind turbines with similar characteristics. The user selects the wind data for a day, then selects the wind turbine and operates the system. The system generates reference speed information in accordance with the user's preferences. The WTE calculations are performed on a PC and 32 bit ARM cortex board, both connected on UART. The generated speed information is applied to the frequency converter via the PI control technique and the induction motor is driven according to the reference speed. The purpose of the study is the hardware implementation of a wind energy conversion system for control and online monitoring in a laboratory environment. The system will allow testing various wind data and performing efficiency analyzes at any time and will enable the testing of small-scale power converters for wind power systems.
Design and implementation of a wind turbine emulator using an induction motor and direct current machine
The study deals with the application details and validation of a wind turbine emulator (WTE) consisting of a user interface, 1.5kW squirrel-cage induction motor (IM) and separately excited direct current machine (DCM). To this end, an induction motor and direct current machine are mechanically coupled to behave like wind turbine. Thus, by controlling the asynchronous motor over wind data, the shaft of the asynchronous motor rotates like the high turbine shaft of the wind turbine and emulates the wind turbine in the laboratory environment. The user interface includes 12 commercial wind turbines with similar characteristics. The user selects the wind data for a day, then selects the wind turbine and operates the system. The system generates reference speed information in accordance with the user's preferences. The WTE calculations are performed on a PC and 32 bit ARM cortex board, both connected on UART. The generated speed information is applied to the frequency converter via the PI control technique and the induction motor is driven according to the reference speed. The purpose of the study is the hardware implementation of a wind energy conversion system for control and online monitoring in a laboratory environment. The system will allow testing various wind data and performing efficiency analyzes at any time and will enable the testing of small-scale power converters for wind power systems.
Design and implementation of a wind turbine emulator using an induction motor and direct current machine
23.09.2020
1438
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Black Widow Optimization-Based Optimal PI-Controlled Wind Turbine Emulator
DOAJ | 2020
|Hardware in the loop, all-electronic wind turbine emulator for grid compliance testing
BASE | 2017
|Design and implementation of a dynamic FPAA based photovoltaic emulator
British Library Online Contents | 2016
|Design and implementation of a dynamic FPAA based photovoltaic emulator
British Library Online Contents | 2016
|