Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Consistent European Guidlines for internal insulation of Building Stock and Heritage: Building Assessment
The consumption of heating energy in existing buildings represents a large share of total energy consumption and therefore contributes significantly to the production of climate-damaging CO2. In order to halt climate change and make a substantial contribution to climate protection, heating energy consumption must therefore be further reduced. The most effective way to do this is to maintain and renovate uninsulated buildings. This measure reduces not only heating costs but increases living comfort as well as the value of the building.:1 Introduction 1 1.1 (Internal) insulation of buildings 1 1.2 Who are these guides aimed at 1 2 Building assessment and humidity in buildings 2 3 Which types of walls are considered? 2 4 Planning phases 3 5 Planning and completion of on-site investigations 3 5.1 Information about the building 3 5.2 Planning 4 5.3 Implementation 5 6 Main sources of moisture in facades 8 6.1 Infiltration of driving rain through facades, façade elements or façade openings 8 6.2 Rising damp 12 6.3 Hygroscopic moisture and hygroscopic salts 13 6.4 Thermal bridges (condensation, mould) 15 7 Assessment of findings 16 7.1 Damage patterns associated with moisture 16 7.2 Façade materials influencing or accentuating humidity problems 18 8 Measuring methods 20 8.1 Measuring water content 21 8.2 Measurement of the capillary water absorption of the facade 24 8.3 Measuring room climate 25 8.4 Salt measurements 26 8.5 Further measurements 27 9 Literature 27 Appendix 28 A 1 Examples for typical, moisture-related damage patterns 28 Group 1 Typical damage patterns due to humidity 28 Group 2 Pathologies that may influence the presence of moisture in walls 39 Group 3 Façade elements that may influence humidity problems 48 Group 4 Façade materials that may influence humidity problems 53 A 2 Notes on the application of the measurement methods 59 A 3 Equipment and preparation for an inspection 64 A 4 Glossary 65 A 5 Flow Chart 66
Consistent European Guidlines for internal insulation of Building Stock and Heritage: Building Assessment
The consumption of heating energy in existing buildings represents a large share of total energy consumption and therefore contributes significantly to the production of climate-damaging CO2. In order to halt climate change and make a substantial contribution to climate protection, heating energy consumption must therefore be further reduced. The most effective way to do this is to maintain and renovate uninsulated buildings. This measure reduces not only heating costs but increases living comfort as well as the value of the building.:1 Introduction 1 1.1 (Internal) insulation of buildings 1 1.2 Who are these guides aimed at 1 2 Building assessment and humidity in buildings 2 3 Which types of walls are considered? 2 4 Planning phases 3 5 Planning and completion of on-site investigations 3 5.1 Information about the building 3 5.2 Planning 4 5.3 Implementation 5 6 Main sources of moisture in facades 8 6.1 Infiltration of driving rain through facades, façade elements or façade openings 8 6.2 Rising damp 12 6.3 Hygroscopic moisture and hygroscopic salts 13 6.4 Thermal bridges (condensation, mould) 15 7 Assessment of findings 16 7.1 Damage patterns associated with moisture 16 7.2 Façade materials influencing or accentuating humidity problems 18 8 Measuring methods 20 8.1 Measuring water content 21 8.2 Measurement of the capillary water absorption of the facade 24 8.3 Measuring room climate 25 8.4 Salt measurements 26 8.5 Further measurements 27 9 Literature 27 Appendix 28 A 1 Examples for typical, moisture-related damage patterns 28 Group 1 Typical damage patterns due to humidity 28 Group 2 Pathologies that may influence the presence of moisture in walls 39 Group 3 Façade elements that may influence humidity problems 48 Group 4 Façade materials that may influence humidity problems 53 A 2 Notes on the application of the measurement methods 59 A 3 Equipment and preparation for an inspection 64 A 4 Glossary 65 A 5 Flow Chart 66
Consistent European Guidlines for internal insulation of Building Stock and Heritage: Building Assessment
Ruisinger, Ulrich (Autor:in) / Sonntag, Heike (Autor:in) / Conrad, Christian (Autor:in) / De Mets, Timo (Autor:in) / Vanhellemont, Yves (Autor:in) / Schöner, Tobias (Autor:in) / Zirkelbach, Daniel (Autor:in) / Technische Universität Dresden / Buildwise (bisher Belgian Building Research Institute) / Fraunhofer Institut für Bauphysik
17.10.2024
Paper
Elektronische Ressource
Englisch
HERITAGE ON THE WEB: BUILDING A GATEWAY TO EUROPEAN CULTURAL HERITAGE
DataCite | 2017
|Energy-saving insulation board for internal insulation of building
Europäisches Patentamt | 2022
|DOAJ | 2023
|