Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Vibroacoustic performance of wooden buildings : Prediction and Perception
When the Swedish building regulations in 1994 allowed wooden multi-storey buildings to be built, this type of lightweight construction became popular due to its low cost and ease of construction, as well as wood being a plentiful resource in Sweden. However, complaints amid inhabitants are often reported due to nuisances caused by disturbing vibrations and noise propagating in the building. Still in 2016, no vibration limits are given in any international standard due the complexity involved. Certain guidelines and guide values have simply been suggested instead. The vibrational response of wooden buildings has therefore become an issue to be tackled during their design phase. Accordingly, the aims of the research presented in this thesis can be divided into two basic categories: (i) development of prediction tools for the verification of vibratory and acoustic performance before a building is constructed and (ii) the development of indicators of human exposure to floor vibrations. As of today, there still exist no accurate and reliable methods for predicting the vibroacoustic performance of wooden buildings. Product development is carried out on an empirical basis, involving both observations and the experience of engineers. Time and costs could be reduced by addressing issues of vibration during the design phase, for instance by using numerical methods (e.g. finite element simulations) as prediction tools; since experiments on prototypes and existing buildings are both time consuming and expensive. Development of such accurate finite element prediction tools is the major objective of the research dealt with in this work. In line with this, finite element models of a prefabricated timber volume element based building were created in the investigations presented, and specifically the flanking transmission occurring was analysed. On the basis of the conclusions drawn in that study, other investigations aiming at improving the accuracy of numerical prediction tools were performed. Thus, the question of whether or ...
Vibroacoustic performance of wooden buildings : Prediction and Perception
When the Swedish building regulations in 1994 allowed wooden multi-storey buildings to be built, this type of lightweight construction became popular due to its low cost and ease of construction, as well as wood being a plentiful resource in Sweden. However, complaints amid inhabitants are often reported due to nuisances caused by disturbing vibrations and noise propagating in the building. Still in 2016, no vibration limits are given in any international standard due the complexity involved. Certain guidelines and guide values have simply been suggested instead. The vibrational response of wooden buildings has therefore become an issue to be tackled during their design phase. Accordingly, the aims of the research presented in this thesis can be divided into two basic categories: (i) development of prediction tools for the verification of vibratory and acoustic performance before a building is constructed and (ii) the development of indicators of human exposure to floor vibrations. As of today, there still exist no accurate and reliable methods for predicting the vibroacoustic performance of wooden buildings. Product development is carried out on an empirical basis, involving both observations and the experience of engineers. Time and costs could be reduced by addressing issues of vibration during the design phase, for instance by using numerical methods (e.g. finite element simulations) as prediction tools; since experiments on prototypes and existing buildings are both time consuming and expensive. Development of such accurate finite element prediction tools is the major objective of the research dealt with in this work. In line with this, finite element models of a prefabricated timber volume element based building were created in the investigations presented, and specifically the flanking transmission occurring was analysed. On the basis of the conclusions drawn in that study, other investigations aiming at improving the accuracy of numerical prediction tools were performed. Thus, the question of whether or ...
Vibroacoustic performance of wooden buildings : Prediction and Perception
Negreira, Juan (Autor:in)
27.04.2016
Hochschulschrift
Elektronische Ressource
Englisch
Fluid Mechanics and Acoustics , Prediction tools , Low frequency vibrations , Vibroacoustics , Wooden buildings , Impact sound insulation , Finite element method , Vibration measurements , Flanking transmission , Elastomers , Design indicators , Vibration acceptability , Vibration annoyance , MEMS accelerometers
Seismic Performance of Wooden Buildings
British Library Conference Proceedings | 2001
|Wooden panel for construction of wooden timber buildings
Europäisches Patentamt | 2022
|Moisture performance of wooden buildings. Feedback information
British Library Conference Proceedings | 1999
|British Library Conference Proceedings | 1993
|