Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer
Carbon concrete composites (C³) hold promise as a material class for constructing lightweight, durable, and sustainable structures. State-of-the-art carbon fiber-reinforced polymer (CFRP) reinforcement comprises infinite multifilament bundles embedded in a polymeric matrix, en-suring adequate load transfer and process robustness, yet it undergoes considerable degrada-tion under elevated temperatures or harsh service conditions. Instead, the success of mineral-impregnated carbon fibers (MCFs) stems from their structural flexibility, inherent heat re-sistance, and outstanding compatibility with cementitious substrates. Geopolymers (GPs) have recently emerged as a viable coating alternative due to a unique combination of many advantages, e.g., sustainability, source diversity, long early-age processing time, synthesis by controlled low-temperature activation and a wide range of temperature resistance. This work aims to develop and test fast-setting MCF composites and associated processing technologies, which hold significant importance for industrial applications and structural fire safety. As a result of the novelty of mineral impregnation technology, challenges regarding the process chain and mixture must be mastered to explore the full material potential before the technology is translated to key markets. The introductory chapter offers a comprehensive review of fiber-reinforced geopolymer (FRG) systems in response to temperature influences. The concept development is grounded in a systematic investigation of several interrelated, critical processing aspects of GP impregnation, focusing on processing quality and strength evolution. This investigation is conducted alongside an automated and continuous impregna-tion technology. Findings from numerous experiments revealed that targeted thermal curing profoundly influ-enced the mechanical properties and microstructure of the GP matrices and resulting MCFs. Hereby, rapid setting and high early-age strength of MCF, comparable to conventional CFRPs, were achieved ...
Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer
Carbon concrete composites (C³) hold promise as a material class for constructing lightweight, durable, and sustainable structures. State-of-the-art carbon fiber-reinforced polymer (CFRP) reinforcement comprises infinite multifilament bundles embedded in a polymeric matrix, en-suring adequate load transfer and process robustness, yet it undergoes considerable degrada-tion under elevated temperatures or harsh service conditions. Instead, the success of mineral-impregnated carbon fibers (MCFs) stems from their structural flexibility, inherent heat re-sistance, and outstanding compatibility with cementitious substrates. Geopolymers (GPs) have recently emerged as a viable coating alternative due to a unique combination of many advantages, e.g., sustainability, source diversity, long early-age processing time, synthesis by controlled low-temperature activation and a wide range of temperature resistance. This work aims to develop and test fast-setting MCF composites and associated processing technologies, which hold significant importance for industrial applications and structural fire safety. As a result of the novelty of mineral impregnation technology, challenges regarding the process chain and mixture must be mastered to explore the full material potential before the technology is translated to key markets. The introductory chapter offers a comprehensive review of fiber-reinforced geopolymer (FRG) systems in response to temperature influences. The concept development is grounded in a systematic investigation of several interrelated, critical processing aspects of GP impregnation, focusing on processing quality and strength evolution. This investigation is conducted alongside an automated and continuous impregna-tion technology. Findings from numerous experiments revealed that targeted thermal curing profoundly influ-enced the mechanical properties and microstructure of the GP matrices and resulting MCFs. Hereby, rapid setting and high early-age strength of MCF, comparable to conventional CFRPs, were achieved ...
Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer
12.04.2023
Hochschulschrift
Elektronische Ressource
Englisch
Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer
TIBKAT | 2023
|Fast‐setting mineral‐impregnated carbon‐fiber (MCF) reinforcements based on geopolymers
Wiley | 2023
|