Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Integrated energy systems – unleashing the flexibility between heat and power
The transition of the whole energy system from the one relying on fossil fuels to the one extensively using renewable energy, requires integration of all available energy sectors into a single integrated energy system (IES) in a holistic way. Optimal deployment of available coupling technologies, e.g. combined heat and power (CHP) units and power-to-heat (P2H) units, can significantly contribute to the operation of an IES. Such an IES can achieve synergy between different energy sectors and obtain a sustainable, cost-effective, flexible and reliable energy system. However, the transition to the high integration of renewable energy sources into the existing system, as well as development of low-temperature district heating (LTDH) causes generation-load imbalance and high energy losses related problems for both the electricity and heating sectors. These problems can negatively influence reliable, secure and profitable system operation. In this context, flexibility at generation and demand sides can be exploited to address the challenges mentioned above. In parallel with the evident development of coupling technologies, such as CHP units, as well as P2H units, the flexibility provided for heating and electricity sectors can be achieved through optimal operation and control of the coupling units locating at both generation and demand sides of the electricity and heating sectors. From the operation perspective, in the past very limited attention has been paid to approaches linking mechanisms for flexibility provision from one hand and their application in an IES constructed of heating and electricity sectors, from another hand. Therefore, new approaches are needed to 1) schedule the operation of generation-side CHP and P2H units to optimally provide flexibility for integrated heating and electricity sectors and 2) assess the techno-economic performance of demand-side P2H units to provide flexibility for the district heating (DH) sector through the design of new control algorithms for controlling heat load. Hence, ...
Integrated energy systems – unleashing the flexibility between heat and power
The transition of the whole energy system from the one relying on fossil fuels to the one extensively using renewable energy, requires integration of all available energy sectors into a single integrated energy system (IES) in a holistic way. Optimal deployment of available coupling technologies, e.g. combined heat and power (CHP) units and power-to-heat (P2H) units, can significantly contribute to the operation of an IES. Such an IES can achieve synergy between different energy sectors and obtain a sustainable, cost-effective, flexible and reliable energy system. However, the transition to the high integration of renewable energy sources into the existing system, as well as development of low-temperature district heating (LTDH) causes generation-load imbalance and high energy losses related problems for both the electricity and heating sectors. These problems can negatively influence reliable, secure and profitable system operation. In this context, flexibility at generation and demand sides can be exploited to address the challenges mentioned above. In parallel with the evident development of coupling technologies, such as CHP units, as well as P2H units, the flexibility provided for heating and electricity sectors can be achieved through optimal operation and control of the coupling units locating at both generation and demand sides of the electricity and heating sectors. From the operation perspective, in the past very limited attention has been paid to approaches linking mechanisms for flexibility provision from one hand and their application in an IES constructed of heating and electricity sectors, from another hand. Therefore, new approaches are needed to 1) schedule the operation of generation-side CHP and P2H units to optimally provide flexibility for integrated heating and electricity sectors and 2) assess the techno-economic performance of demand-side P2H units to provide flexibility for the district heating (DH) sector through the design of new control algorithms for controlling heat load. Hence, ...
Integrated energy systems – unleashing the flexibility between heat and power
Wang, Jiawei (Autor:in)
01.01.2020
Wang , J 2020 , Integrated energy systems – unleashing the flexibility between heat and power . Technical University of Denmark .
Buch
Elektronische Ressource
Englisch
DDC:
690
Wiley | 2022
|British Library Online Contents | 2003
|Unleashing the potential of nanotechnology
British Library Online Contents | 2004
|The Power of Place: Unleashing the Potential of Place-Based Green Energy Landscapes
DOAJ | 2024
|