Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High velocity impact and fragmentation of concrete : numerical simulation
In this study load-rate dependent behavior of plain concrete has been investigated by means of numerical methods. To accomplish this, a three dimensional explicit Lagrangian finite element program has been developed for the simulation of contact, impact and fragmentation events based on mixed programming approach. In this respect a graphical user interface (GUI) has been developed using C++ programming language to carry out pre- and post-processing tasks. On the other hand, another program has been developed using FORTRAN programming language to carry out finite element computations. Communication in between GUI and FORTRAN program has been established using standard function import/export mechanism. Microplane material model for concrete has been extended to account for large deformations, rate of loading and thermal effects. Stress locking observed under dominant tensile loading has been addressed by proper relaxation of the kinematical constraint. On the other hand mesh dependency, due to softening behavior present, has been tackled by crack-band regularization. Kinematical contact constraints in normal and tangential directions have been formulated in both total and rate forms. Predictor-corrector type algorithm has been employed as method of constraint enforcement. Requirements for the exact satisfaction of constraints have been discussed. Mohr-Coulomb type frictional constitutive behavior is adopted in tangential direction. Classical radial return mapping algorithm, frequently used for elastic-plastic materials, has been used to perform constitutive update in tangential direction. During high velocity contact-impact events, like projectile penetration, motion function loses its regularity around the impact region due to presence of very large deformations. In order to be able to continue simulations staying within Lagrangian framework, such material is simply removed with a technique based on adaptive element deletion. Maximum principal strain has been used as a deletion criterion. Topological data structures have been implemented to keep track of the evolving contact interface during simulations. Furthermore, to accelerate contact search a procedure based on so-called moving contact sphere has been developed. Predictive capability of the numerical techniques proposed has been assessed by comparisons with some relevant experimental results from literature. Main conclusions have been drawn out and future research directions have been recommended.
High velocity impact and fragmentation of concrete : numerical simulation
In this study load-rate dependent behavior of plain concrete has been investigated by means of numerical methods. To accomplish this, a three dimensional explicit Lagrangian finite element program has been developed for the simulation of contact, impact and fragmentation events based on mixed programming approach. In this respect a graphical user interface (GUI) has been developed using C++ programming language to carry out pre- and post-processing tasks. On the other hand, another program has been developed using FORTRAN programming language to carry out finite element computations. Communication in between GUI and FORTRAN program has been established using standard function import/export mechanism. Microplane material model for concrete has been extended to account for large deformations, rate of loading and thermal effects. Stress locking observed under dominant tensile loading has been addressed by proper relaxation of the kinematical constraint. On the other hand mesh dependency, due to softening behavior present, has been tackled by crack-band regularization. Kinematical contact constraints in normal and tangential directions have been formulated in both total and rate forms. Predictor-corrector type algorithm has been employed as method of constraint enforcement. Requirements for the exact satisfaction of constraints have been discussed. Mohr-Coulomb type frictional constitutive behavior is adopted in tangential direction. Classical radial return mapping algorithm, frequently used for elastic-plastic materials, has been used to perform constitutive update in tangential direction. During high velocity contact-impact events, like projectile penetration, motion function loses its regularity around the impact region due to presence of very large deformations. In order to be able to continue simulations staying within Lagrangian framework, such material is simply removed with a technique based on adaptive element deletion. Maximum principal strain has been used as a deletion criterion. Topological data structures have been implemented to keep track of the evolving contact interface during simulations. Furthermore, to accelerate contact search a procedure based on so-called moving contact sphere has been developed. Predictive capability of the numerical techniques proposed has been assessed by comparisons with some relevant experimental results from literature. Main conclusions have been drawn out and future research directions have been recommended.
High velocity impact and fragmentation of concrete : numerical simulation
Impakt mit hoher Geschwindigkeit und Fragmentierung von Beton : numerische Untersuchungen
Irhan, Baris (Autor:in) / Universität Stuttgart (Gastgebende Institution)
2014
Sonstige
Elektronische Ressource
Englisch
DDC:
624
High velocity impact and fragmentation of concrete : numerical simulation
TIBKAT | 2014
|High velocity impact and fragmentation of concrete : numerical simulation
UB Braunschweig | 2014
|Simulation of high velocity concrete fragmentation using SPH/MLSPH
Tema Archiv | 2003
|Mass-Velocity Correlation in Impact Fragmentation
British Library Online Contents | 2014
|Numerical modeling of high velocity impact applied to reinforced concrete panel
DOAJ | 2019
|