Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Simulation of Urban Growth and Urban Living Environment with Release of the Green Belt
Green belts in developing or developed countries have been released because city-center development has reached a saturation point, and the strict protections and restrictions within green belts has led to an increase in opposition from local residents and property owners. However, green belt release has led to urban growth within the associated regions and cities, resulting in an increase in the temperature and the accumulation of pollutants in the atmosphere. We intend to prove quantitatively the effect of the release of green belts at the local level based on the interactions among land cover, climate, and air quality and to provide information for policy decisions accordingly. Our simulation results show that the urban areas of Jeju and Chuncheon, in South Korea, where green belts have been completely released, will increase by up to 21.83% by 2025 and 123.93% by 2020, respectively, compared to areas that have retained green belts. The simulations also show that the surface temperature within the released region of Jeju and Chuncheon will increase by up to 0.83% by 2025 and 0.03% by 2020, respectively. The average atmospheric concentrations within the released region of Jeju and Chuncheon were modelled to increase by up to 256.93% by 2025 and 337.29% by 2020, respectively.
Simulation of Urban Growth and Urban Living Environment with Release of the Green Belt
Green belts in developing or developed countries have been released because city-center development has reached a saturation point, and the strict protections and restrictions within green belts has led to an increase in opposition from local residents and property owners. However, green belt release has led to urban growth within the associated regions and cities, resulting in an increase in the temperature and the accumulation of pollutants in the atmosphere. We intend to prove quantitatively the effect of the release of green belts at the local level based on the interactions among land cover, climate, and air quality and to provide information for policy decisions accordingly. Our simulation results show that the urban areas of Jeju and Chuncheon, in South Korea, where green belts have been completely released, will increase by up to 21.83% by 2025 and 123.93% by 2020, respectively, compared to areas that have retained green belts. The simulations also show that the surface temperature within the released region of Jeju and Chuncheon will increase by up to 0.83% by 2025 and 0.03% by 2020, respectively. The average atmospheric concentrations within the released region of Jeju and Chuncheon were modelled to increase by up to 256.93% by 2025 and 337.29% by 2020, respectively.
Simulation of Urban Growth and Urban Living Environment with Release of the Green Belt
Seongwoo Jeon (Autor:in) / Hyunjung Hong (Autor:in) / Sungdae Kang (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
green belt , urban growth , land cover , urban living environment , climate change , surface temperature , air quality , atmospheric concentration , conservation , sustainable use , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Online Contents | 1995
|Urban redevelopment of green belt villages
Elsevier | 1990
|