Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation of Future Changes in Climate Extremes over Southeast Asia Using Downscaled CMIP6 GCM Projections
This study presented an assessment of climate extremes in the Southeast Asia (SEA) region, utilizing downscaled climate projections from the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs). The study outputs uncovered statistically significant trends indicating a rise in extreme precipitation and temperature events throughout SEA for both the near-term (2021–2060) and long-term (2061–2100) future under both SSP245 and SSP585 scenarios, in comparison to the historical period (1950–2014). Moreover, we investigated the seasonal fluctuations in rainfall and temperature distributions, accentuating the occurrence of drier dry seasons and wetter rainy seasons in particular geographic areas. The focused examination of seven prominent cities in SEA underscored the escalating frequency of extreme rainfall events and rising temperatures, heightening the urban vulnerability to urban flooding and heatwaves. This study’s findings enhance our comprehension of potential climate extremes in SEA, providing valuable insights to inform climate adaptation, mitigation strategies, and natural disaster preparedness efforts within the region.
Evaluation of Future Changes in Climate Extremes over Southeast Asia Using Downscaled CMIP6 GCM Projections
This study presented an assessment of climate extremes in the Southeast Asia (SEA) region, utilizing downscaled climate projections from the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs). The study outputs uncovered statistically significant trends indicating a rise in extreme precipitation and temperature events throughout SEA for both the near-term (2021–2060) and long-term (2061–2100) future under both SSP245 and SSP585 scenarios, in comparison to the historical period (1950–2014). Moreover, we investigated the seasonal fluctuations in rainfall and temperature distributions, accentuating the occurrence of drier dry seasons and wetter rainy seasons in particular geographic areas. The focused examination of seven prominent cities in SEA underscored the escalating frequency of extreme rainfall events and rising temperatures, heightening the urban vulnerability to urban flooding and heatwaves. This study’s findings enhance our comprehension of potential climate extremes in SEA, providing valuable insights to inform climate adaptation, mitigation strategies, and natural disaster preparedness efforts within the region.
Evaluation of Future Changes in Climate Extremes over Southeast Asia Using Downscaled CMIP6 GCM Projections
Sophal Try (Autor:in) / Xiaosheng Qin (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2021
|Future changes in precipitation over Central Asia based on CMIP6 projections
DOAJ | 2020
|Future Projection of Precipitation Bioclimatic Indicators over Southeast Asia Using CMIP6
DOAJ | 2022
|Downscaled climate change projections over Spain: application to water resources
Taylor & Francis Verlag | 2013
|