Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Examining Farmers’ Adoption Decisions towards Precision-Agricultural Practices in Greek Dairy Cattle Farms
Nowadays, the sustainability of Greek dairy cattle farms is questionable due to low competitiveness and high GHG emissions. In this context, the BIOCIRCULAR project, funded by the EYDE ETAK, developed a series of alternative practices focusing on precision agriculture principles. However, the adoption of any practice from farmers is not a given, and depends on several determinants. Hence, the objective of this study is to examine farmers’ adoption decisions regarding precision-agricultural practices in Greek dairy production systems, as well as the economic and environmental impacts of this adoption. In order to achieve this, a bio-economic model was developed based on mathematical programming methods. The proposed model simulates a large number of dairy cattle farms with or without crop production, including different management strategies and their relevant costs, and provides an environmental assessment of the adopted practices based on GHG emissions. Moreover, in order to analyze farmers’ adoption decisions, different policy measures, linked to various environmental outcomes, were examined. The results highlighted that the adoption of precision-agricultural practices led to significantly better economic and environmental outcomes. Furthermore, it was found that different levels of incentives can be efficiently targeted to encourage the adoption of new feeds and, more broadly, to secure the sustainability of the sector.
Examining Farmers’ Adoption Decisions towards Precision-Agricultural Practices in Greek Dairy Cattle Farms
Nowadays, the sustainability of Greek dairy cattle farms is questionable due to low competitiveness and high GHG emissions. In this context, the BIOCIRCULAR project, funded by the EYDE ETAK, developed a series of alternative practices focusing on precision agriculture principles. However, the adoption of any practice from farmers is not a given, and depends on several determinants. Hence, the objective of this study is to examine farmers’ adoption decisions regarding precision-agricultural practices in Greek dairy production systems, as well as the economic and environmental impacts of this adoption. In order to achieve this, a bio-economic model was developed based on mathematical programming methods. The proposed model simulates a large number of dairy cattle farms with or without crop production, including different management strategies and their relevant costs, and provides an environmental assessment of the adopted practices based on GHG emissions. Moreover, in order to analyze farmers’ adoption decisions, different policy measures, linked to various environmental outcomes, were examined. The results highlighted that the adoption of precision-agricultural practices led to significantly better economic and environmental outcomes. Furthermore, it was found that different levels of incentives can be efficiently targeted to encourage the adoption of new feeds and, more broadly, to secure the sustainability of the sector.
Examining Farmers’ Adoption Decisions towards Precision-Agricultural Practices in Greek Dairy Cattle Farms
Georgios Kleftodimos (Autor:in) / Leonidas Sotirios Kyrgiakos (Autor:in) / Christina Kleisiari (Autor:in) / Aristotelis C. Tagarakis (Autor:in) / Dionysis Bochtis (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Smallholder farmers' behavioural intentions towards sustainable agricultural practices
Online Contents | 2017
|DOAJ | 2022
|Dairy Cattle Management in Cold Housing - Experience Gained on East German Dairy Farms
British Library Conference Proceedings | 1997
|