Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition
Achieving biologically diverse agricultural systems requires a commitment to changes in land use. While in-field agrobiodiversity is a critical route to such a transition, riparian systems remain an important, yet understudied, pathway to achieve key diversity and ecosystem services and targets. Notably, at the interface of agricultural landscapes and aquatic systems, the diversification of riparian buffers with trees reduces the non-point source pollution in waterways. However, in riparian agroforestry systems, little is known about herbaceous community patterns and, importantly, the herbaceous community’s role in governing carbon (C) and nitrogen (N) cycling. Our study investigated herbaceous community taxonomic and phylogenetic diversity patterns in riparian (i) grasslands (GRASSLAND), (ii) rehabilitated agroforests (AGROFOREST-REHAB), and (iii) remnant forests (AGROFOREST-NATURAL). We then determined the biodiversity-ecosystem function relationships between community functional diversity metrics, C and N cycling, and greenhouse gas fluxes. We observed significant differences in taxonomic and phylogenetic diversity among riparian buffer types. We found that herbaceous plant communities in riparian agroforestry systems expressed plant trait syndromes associated with fast-growing, resource acquiring strategies, while grassland buffer plants exhibited slow-growing, resource conserving strategies. Herbaceous communities with high functional diversity and resource acquiring trait syndromes, such as those in the agroforestry riparian systems, were significantly correlated with lower rates of soil CO2 efflux and N mineralization, both of which are key fluxes related to ecosystem service delivery. Our findings provide further evidence that functionally diverse, and not necessarily taxonomically diverse, plant communities are strongly correlated to positive ecosystem processes in riparian agroforestry systems, and that these communities contribute to the transition of agricultural lands toward biologically and functionally diverse landscapes.
Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition
Achieving biologically diverse agricultural systems requires a commitment to changes in land use. While in-field agrobiodiversity is a critical route to such a transition, riparian systems remain an important, yet understudied, pathway to achieve key diversity and ecosystem services and targets. Notably, at the interface of agricultural landscapes and aquatic systems, the diversification of riparian buffers with trees reduces the non-point source pollution in waterways. However, in riparian agroforestry systems, little is known about herbaceous community patterns and, importantly, the herbaceous community’s role in governing carbon (C) and nitrogen (N) cycling. Our study investigated herbaceous community taxonomic and phylogenetic diversity patterns in riparian (i) grasslands (GRASSLAND), (ii) rehabilitated agroforests (AGROFOREST-REHAB), and (iii) remnant forests (AGROFOREST-NATURAL). We then determined the biodiversity-ecosystem function relationships between community functional diversity metrics, C and N cycling, and greenhouse gas fluxes. We observed significant differences in taxonomic and phylogenetic diversity among riparian buffer types. We found that herbaceous plant communities in riparian agroforestry systems expressed plant trait syndromes associated with fast-growing, resource acquiring strategies, while grassland buffer plants exhibited slow-growing, resource conserving strategies. Herbaceous communities with high functional diversity and resource acquiring trait syndromes, such as those in the agroforestry riparian systems, were significantly correlated with lower rates of soil CO2 efflux and N mineralization, both of which are key fluxes related to ecosystem service delivery. Our findings provide further evidence that functionally diverse, and not necessarily taxonomically diverse, plant communities are strongly correlated to positive ecosystem processes in riparian agroforestry systems, and that these communities contribute to the transition of agricultural lands toward biologically and functionally diverse landscapes.
Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition
Serra W. Buchanan (Autor:in) / Megan Baskerville (Autor:in) / Maren Oelbermann (Autor:in) / Andrew M. Gordon (Autor:in) / Naresh V. Thevathasan (Autor:in) / Marney E. Isaac (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
agrobiodiversity , functional diversity , greenhouse gas fluxes , plant functional traits , riparian agroforestry , soil co<sub>2</sub> efflux , soil n mineralization , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Interactions Among Ecosystem Services Across Land Uses in a Floodplain Agroecosystem
BASE | 2014
|BASE | 2022
|Contribution of agroforests to landscape carbon storage
Online Contents | 2013
|Provision of Ecosystem Services in Riparian Hemiboreal Forest Fixed-Width Buffers
DOAJ | 2022
|