Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights
Observing and interpreting restaurant customers’ evolution of dining patterns and satisfaction during COVID-19 is of critical importance in terms of developing sustainable business insights. This study describes and analyzes customers’ dining behavior before and after the pandemic outbreak by means of statistically aggregating and empirically correlating 651,703 restaurant-user-generated contents posted by diners during 2019–2020. Twenty review topics, mostly food, were identified by latent Dirichlet allocation, whereas analysis of variation and rating-review regression were performed to explore whether and why customers became less satisfied. Results suggest that customers have been paying fewer visits to restaurants since the outbreak, assigning lower ratings, and showing limited evidence of spending more. Interestingly, queuing, the most annoying factor for restaurant customers during normal periods, turns out to receive much less complaint during COVID-19. This study contributes by discovering business knowledge in the context of COVID-19 based on big data that features accessibility, relevance, volume, and information richness, which is transferable to future studies and can benefit additional population and business. Meanwhile, this study also provides practical suggestions to managers regarding the framework of self-evaluation, business mode, and operational optimization.
Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights
Observing and interpreting restaurant customers’ evolution of dining patterns and satisfaction during COVID-19 is of critical importance in terms of developing sustainable business insights. This study describes and analyzes customers’ dining behavior before and after the pandemic outbreak by means of statistically aggregating and empirically correlating 651,703 restaurant-user-generated contents posted by diners during 2019–2020. Twenty review topics, mostly food, were identified by latent Dirichlet allocation, whereas analysis of variation and rating-review regression were performed to explore whether and why customers became less satisfied. Results suggest that customers have been paying fewer visits to restaurants since the outbreak, assigning lower ratings, and showing limited evidence of spending more. Interestingly, queuing, the most annoying factor for restaurant customers during normal periods, turns out to receive much less complaint during COVID-19. This study contributes by discovering business knowledge in the context of COVID-19 based on big data that features accessibility, relevance, volume, and information richness, which is transferable to future studies and can benefit additional population and business. Meanwhile, this study also provides practical suggestions to managers regarding the framework of self-evaluation, business mode, and operational optimization.
Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights
Susan (Sixue) Jia (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Restaurant - Vietnamese dining style
Online Contents | 1997
DOAJ | 2020
|Dining room system of plateau restaurant and plateau restaurant system
Europäisches Patentamt | 2024
|Restaurant - Dining under a canopy of plywood
Online Contents | 2014
Restaurant extends outdoor dining with space heaters
British Library Online Contents | 1998