Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Permeability Prediction Model Modified on Kozeny-Carman for Building Foundation of Clay Soil
Clay soil is a common building foundation material, and its permeability is very important for the safety of foundation pits and the later settlement of buildings. However, the traditional Kozeny-Carman (K-C) equation shows serious discrepancies when predicting the permeability of clay in building foundation treatment. Therefore, solving the application of K-C equation in clay is a problem faced by the engineers and scholars. In this paper, the influence of clay mineralogy on pore structure and permeability is analyzed, and then the effective e (eeff) and effective SSA (Seff) are proposed. Based on the eeff and Seff, the permeability prediction model modified on Kozeny-Carman is built. Then, seepage experiments are conducted on two types of clay samples to test this prediction model; at the same time, the MIP combining freeze-drying methods are used to obtain the Seff and eeff. Through the discussion of the test results, three main conclusions are obtained: (1) there are invalid pores in clay due to the influence of clay mineral, this is the reason for which K-C equation is unsuitable for clay; (2) the eeff and Seff can reflect the structural state of clay during seepage; (3) the results of the permeability prediction model in this paper agree well with the test results, which indicates that this prediction model is applicable to clay. The research results of this paper are significant to solve the academic problem that K-C equation is not applicable to clay and significant to ensure the safety of building foundation pits in clay areas.
Permeability Prediction Model Modified on Kozeny-Carman for Building Foundation of Clay Soil
Clay soil is a common building foundation material, and its permeability is very important for the safety of foundation pits and the later settlement of buildings. However, the traditional Kozeny-Carman (K-C) equation shows serious discrepancies when predicting the permeability of clay in building foundation treatment. Therefore, solving the application of K-C equation in clay is a problem faced by the engineers and scholars. In this paper, the influence of clay mineralogy on pore structure and permeability is analyzed, and then the effective e (eeff) and effective SSA (Seff) are proposed. Based on the eeff and Seff, the permeability prediction model modified on Kozeny-Carman is built. Then, seepage experiments are conducted on two types of clay samples to test this prediction model; at the same time, the MIP combining freeze-drying methods are used to obtain the Seff and eeff. Through the discussion of the test results, three main conclusions are obtained: (1) there are invalid pores in clay due to the influence of clay mineral, this is the reason for which K-C equation is unsuitable for clay; (2) the eeff and Seff can reflect the structural state of clay during seepage; (3) the results of the permeability prediction model in this paper agree well with the test results, which indicates that this prediction model is applicable to clay. The research results of this paper are significant to solve the academic problem that K-C equation is not applicable to clay and significant to ensure the safety of building foundation pits in clay areas.
Permeability Prediction Model Modified on Kozeny-Carman for Building Foundation of Clay Soil
Jian Chen (Autor:in) / Huawei Tong (Autor:in) / Jie Yuan (Autor:in) / Yingguang Fang (Autor:in) / Renguo Gu (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Goodbye, Hazen; Hello, Kozeny-Carman
Online Contents | 2003
|A Comparative Study of Permeability: HYPON versus Carman-Kozeny Models
British Library Conference Proceedings | 2002
|Goodbye, Hazen; Hello, Kozeny-Carman
British Library Online Contents | 2003
|Permeability of Fiber-Filled Porous Media: Kozeny-Carman-Ethier Modeling Approach
British Library Online Contents | 2009
|Modified expression of Kozeny—Carman equation based on semilog—sigmoid function
British Library Online Contents | 2018
|