Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Spatiotemporal Features and Socioeconomic Drivers of PM2.5 Concentrations in China
Fine particulate matter (PM2.5) has been an important environmental issue because it can seriously harm human health and can adversely affect the economy. It poses a problem worldwide and especially in China. Based on data of PM2.5 concentration and night light data, both collected from satellite remote sensing during 1998⁻2013 in China, we identify the socio-economic determinants of PM2.5 pollution by taking into account the spatial flow and diffusion of regional pollutants. Our results show PM2.5 pollution displays the remarkable feature of spatial agglomeration. High concentrations of PM2.5 are mainly found in Eastern China (including Shandong, Jiangsu, and Anhui provinces) and the Jing-Jin-Ji Area region in the north of China (including Beijing, Tianjin, and Hebei provinces) as well as in the Henan provinces in central China. There is a significant positive spatial spillover effect of PM2.5 pollution, so that an increase in PM2.5 concentration in one region contributes to an increase in neighboring regions. Whether using per capita GDP or nighttime lighting indicators, there is a significant N-shaped curve that relates PM2.5 concentration and economic growth. Population density, industrial structure, and energy consumption have distinct impacts on PM2.5 pollution, while urbanization is negative correlated with PM2.5 emissions. As a result, policies to strengthen regional joint prevention and control, implement cleaner manufacturing techniques, and reduce dependence on fossil fuels should be considered by policy makers for mitigating PM2.5 pollution.
Spatiotemporal Features and Socioeconomic Drivers of PM2.5 Concentrations in China
Fine particulate matter (PM2.5) has been an important environmental issue because it can seriously harm human health and can adversely affect the economy. It poses a problem worldwide and especially in China. Based on data of PM2.5 concentration and night light data, both collected from satellite remote sensing during 1998⁻2013 in China, we identify the socio-economic determinants of PM2.5 pollution by taking into account the spatial flow and diffusion of regional pollutants. Our results show PM2.5 pollution displays the remarkable feature of spatial agglomeration. High concentrations of PM2.5 are mainly found in Eastern China (including Shandong, Jiangsu, and Anhui provinces) and the Jing-Jin-Ji Area region in the north of China (including Beijing, Tianjin, and Hebei provinces) as well as in the Henan provinces in central China. There is a significant positive spatial spillover effect of PM2.5 pollution, so that an increase in PM2.5 concentration in one region contributes to an increase in neighboring regions. Whether using per capita GDP or nighttime lighting indicators, there is a significant N-shaped curve that relates PM2.5 concentration and economic growth. Population density, industrial structure, and energy consumption have distinct impacts on PM2.5 pollution, while urbanization is negative correlated with PM2.5 emissions. As a result, policies to strengthen regional joint prevention and control, implement cleaner manufacturing techniques, and reduce dependence on fossil fuels should be considered by policy makers for mitigating PM2.5 pollution.
Spatiotemporal Features and Socioeconomic Drivers of PM2.5 Concentrations in China
Deshan Li (Autor:in) / Yanfen Zhao (Autor:in) / Rongwei Wu (Autor:in) / Jiefang Dong (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Spatiotemporal Differences and Dynamic Evolution of PM2.5 Pollution in China
DOAJ | 2020
|Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016)
DOAJ | 2020
|Inequality of household consumption and PM2.5 footprint across socioeconomic groups in China
DOAJ | 2022
|