Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. However, evidence for the AOM in freshwater habitats is rare, especially in dam and weir (small-scale dam) reservoirs. Here, the AOM process was examined in freshwater sediments of a small-scale dam reservoir located in Rzeszów, SE Poland. The AOM rate was determined in the main experiment with the addition of the 13CH4 isotope marker (He+13CH4). Sediments were collected three times: in spring (in May, 15 °C), in summer (in July, 20 °C) and in autumn (in September, 10 °C). Further analysis considers the impact on AOM rate of potential electron acceptors present in pore-water (NO2−, NO3−, SO42−, and Fe3+ ions). The work suggests that an AOM process does take place in the studied reservoir sediments, with this evidenced by the presence in the headspace of an increased 13CO2 concentration deemed to derive from 13CH4 oxidation. Rates of AOM noted were of 0.36−1.42 nmol·g−1·h−1, with the most intensive oxidation in each sediment layer occurring at 20 °C. While none of the potential electron acceptors considered individually were found to have had a statistically significant influence on the AOM rate, their significance to the dynamics of the AOM process was not precluded.
Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. However, evidence for the AOM in freshwater habitats is rare, especially in dam and weir (small-scale dam) reservoirs. Here, the AOM process was examined in freshwater sediments of a small-scale dam reservoir located in Rzeszów, SE Poland. The AOM rate was determined in the main experiment with the addition of the 13CH4 isotope marker (He+13CH4). Sediments were collected three times: in spring (in May, 15 °C), in summer (in July, 20 °C) and in autumn (in September, 10 °C). Further analysis considers the impact on AOM rate of potential electron acceptors present in pore-water (NO2−, NO3−, SO42−, and Fe3+ ions). The work suggests that an AOM process does take place in the studied reservoir sediments, with this evidenced by the presence in the headspace of an increased 13CO2 concentration deemed to derive from 13CH4 oxidation. Rates of AOM noted were of 0.36−1.42 nmol·g−1·h−1, with the most intensive oxidation in each sediment layer occurring at 20 °C. While none of the potential electron acceptors considered individually were found to have had a statistically significant influence on the AOM rate, their significance to the dynamics of the AOM process was not precluded.
Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
Dorota Szal (Autor:in) / Renata Gruca-Rokosz (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Phytosociological Data in Assessment of Anthropogenic Changes in Vegetation of Rzeszów Reservoir
DOAJ | 2021
|The Circular Footbridge of Rzeszów, Poland
Taylor & Francis Verlag | 2015
|