Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Daylight Utilization with Light Pipe in Farm Animal Production: A Simulation Approach
Light pipes offer a passive way to bring daylight inside deep buildings, such as agricultural buildings. However, the lack of reliable performance predictability methods for light pipes represents a major obstacle preventing their widespread use. This paper evaluates a simulation approach for performance prediction and identifies key light pipe design parameters affecting their daylight transmission performance. The study was carried out through continuous monitoring of daylight in two full-scale, identical pig stables fitted with two light pipe systems, Solatube® and Velux®. The experiment included three continuously measuring sensors in each stable and an outdoor sensor during 2013 and 2014. A forward raytracing tool, TracePro®, was used for illuminance prediction and parametric simulations. The simulation results for overcast skies indicated discrepancies between the simulated and average measurement results below 30% in all cases. The discrepancies for clear skies were somewhat higher, i.e., below 30% for 67% of the cases. The higher discrepancies with clear skies were due to the overestimation of absolute sunlight levels and absence of an advanced and detailed optical characterization of the dome collector’s surface. The parametric results have shown that light pipes’ performance is better during summer time, in sunny climates, at low to mid-latitudes, which provides higher solar altitudes than during winter and cloudy climates at high latitudes. Methods to improve the luminous transmittance for low solar altitudes occurring in Scandinavia include: bending or tilting the pipe, increasing the aspect ratio, improving the pipe specular reflectance, tilting the collector to the south, and using optical redirecting system in the collector.
Daylight Utilization with Light Pipe in Farm Animal Production: A Simulation Approach
Light pipes offer a passive way to bring daylight inside deep buildings, such as agricultural buildings. However, the lack of reliable performance predictability methods for light pipes represents a major obstacle preventing their widespread use. This paper evaluates a simulation approach for performance prediction and identifies key light pipe design parameters affecting their daylight transmission performance. The study was carried out through continuous monitoring of daylight in two full-scale, identical pig stables fitted with two light pipe systems, Solatube® and Velux®. The experiment included three continuously measuring sensors in each stable and an outdoor sensor during 2013 and 2014. A forward raytracing tool, TracePro®, was used for illuminance prediction and parametric simulations. The simulation results for overcast skies indicated discrepancies between the simulated and average measurement results below 30% in all cases. The discrepancies for clear skies were somewhat higher, i.e., below 30% for 67% of the cases. The higher discrepancies with clear skies were due to the overestimation of absolute sunlight levels and absence of an advanced and detailed optical characterization of the dome collector’s surface. The parametric results have shown that light pipes’ performance is better during summer time, in sunny climates, at low to mid-latitudes, which provides higher solar altitudes than during winter and cloudy climates at high latitudes. Methods to improve the luminous transmittance for low solar altitudes occurring in Scandinavia include: bending or tilting the pipe, increasing the aspect ratio, improving the pipe specular reflectance, tilting the collector to the south, and using optical redirecting system in the collector.
Daylight Utilization with Light Pipe in Farm Animal Production: A Simulation Approach
Alejandro Pacheco Diéguez’ (Autor:in) / Niko Gentile (Autor:in) / Hans von Wachenfelt (Autor:in) / Marie-Claude Dubois (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Daylight And Buildings: Architectural Solutions For Enhanced Daylight Utilization
British Library Conference Proceedings | 2001
|Daylight, artificial light and artificial daylight
Engineering Index Backfile | 1928
|New Systems for Better Daylight Utilization
British Library Conference Proceedings | 1996
|Daylight and energy performances of a new type of light pipe
Online Contents | 2004
|