Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Оптимизационно-аналитическое моделирование технологических режимов производства микрокремнезема для изоляционных панелей типа VIP
Рассмотрены два способа синтеза мелкозернистого микрокремнезёма из диатомитовых пород, пригодного для создания вакуумных теплоизоляционных панелей с теплопроводностью 0,002–0,02 Вт/м2к. Методом анализа детерминированных моделей переноса тепла в зернистых системах определены основные индикаторы, определя-ющие зависимость теплопроводности от физических и топологических свойств частиц диоксида кремния. Для оценки и регулирования теплопроводности зернистых систем, к основным индикаторам можно отнести: m2 – по-ристость микроструктуры; ρк – плотность кластеров, фор-мирующих микроструктуру; εпр – характеристику степени (диссипации энергии излучения) черноты частиц напол-нителя; di – диаметр пор на i-ом масштабном уровне; λТ , λГ – теплопроводность твёрдой и газовой фазы системы; a – коэффициент аккомодации; N – координационное число; D – фрактальную размерность, характеризующую топологические особенности строения частиц, агрегатов, кластеров. Проведён экспериментальный анализ свойств синтезированного микрокремнезёма. В результате проведённых исследований установлено, что оптимальные свойства дисперсного микрокремнезёма, синтезированного из опал-кристобалитовых биоморфных пород (диатомита Атемарского месторождения) путём осаждения оксида кремния из коллоидного раствора, получены при реализации второго способа производства. В процессе синтеза получен дисперсный микрокремнезём, представленный минералом опал, построенным из полимеризованных нитей аморфного кремнезёма, которые свёрнуты в глобулы, шаровые кластеры диаметром в диапазоне 2-40 нм. Топология поверхности глобул характеризуется фрактальной размерностью D = 2,32; 2,64, что обеспечивает снижение значений коэффициента аккомодации и соответственно теплопроводности. Ассоциации шаровидных кластеров из частиц наноразмерного уровня формируют масштабно-инвариантную поровую структуру, обеспечивающую низкую теплопроводность[1]. [1] Работа выполнена при финансовой поддержке гранта РФФИ N 18-48- 130001/18 «Оптимизационное моделирование свойств теплоизоляционных функционально-градиентных изделий на основе минеральных порошков оксида кремния, синтезированного из природного диатомита».
Оптимизационно-аналитическое моделирование технологических режимов производства микрокремнезема для изоляционных панелей типа VIP
Рассмотрены два способа синтеза мелкозернистого микрокремнезёма из диатомитовых пород, пригодного для создания вакуумных теплоизоляционных панелей с теплопроводностью 0,002–0,02 Вт/м2к. Методом анализа детерминированных моделей переноса тепла в зернистых системах определены основные индикаторы, определя-ющие зависимость теплопроводности от физических и топологических свойств частиц диоксида кремния. Для оценки и регулирования теплопроводности зернистых систем, к основным индикаторам можно отнести: m2 – по-ристость микроструктуры; ρк – плотность кластеров, фор-мирующих микроструктуру; εпр – характеристику степени (диссипации энергии излучения) черноты частиц напол-нителя; di – диаметр пор на i-ом масштабном уровне; λТ , λГ – теплопроводность твёрдой и газовой фазы системы; a – коэффициент аккомодации; N – координационное число; D – фрактальную размерность, характеризующую топологические особенности строения частиц, агрегатов, кластеров. Проведён экспериментальный анализ свойств синтезированного микрокремнезёма. В результате проведённых исследований установлено, что оптимальные свойства дисперсного микрокремнезёма, синтезированного из опал-кристобалитовых биоморфных пород (диатомита Атемарского месторождения) путём осаждения оксида кремния из коллоидного раствора, получены при реализации второго способа производства. В процессе синтеза получен дисперсный микрокремнезём, представленный минералом опал, построенным из полимеризованных нитей аморфного кремнезёма, которые свёрнуты в глобулы, шаровые кластеры диаметром в диапазоне 2-40 нм. Топология поверхности глобул характеризуется фрактальной размерностью D = 2,32; 2,64, что обеспечивает снижение значений коэффициента аккомодации и соответственно теплопроводности. Ассоциации шаровидных кластеров из частиц наноразмерного уровня формируют масштабно-инвариантную поровую структуру, обеспечивающую низкую теплопроводность[1]. [1] Работа выполнена при финансовой поддержке гранта РФФИ N 18-48- 130001/18 «Оптимизационное моделирование свойств теплоизоляционных функционально-градиентных изделий на основе минеральных порошков оксида кремния, синтезированного из природного диатомита».
Оптимизационно-аналитическое моделирование технологических режимов производства микрокремнезема для изоляционных панелей типа VIP
Vladimir Selyaev (Autor:in) / Oleg Liyaskin (Autor:in) / Vyacheslav Neverov (Autor:in) / Pavel Selyaev (Autor:in) / Evgenia Kechutkina (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Расчетная модель плоской фермы рамного типа с произвольным числом панелей
DOAJ | 2018
|Europäisches Patentamt | 2020
ОГНЕСТОЙКИЕ ПРОЗРАЧНЫЕ ПОКРЫТИЯ ДЛЯ СТРОИТЕЛЬНЫХ ПАНЕЛЕЙ
Europäisches Patentamt | 2021