Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Predicting spatial variations in annual average outdoor ultrafine particle concentrations in Montreal and Toronto, Canada: Integrating land use regression and deep learning models
Background: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly within cities and long-term exposures to these pollutants have been associated with a variety of adverse health outcomes. Objective: This study integrated multiple approaches to develop new models to estimate within-city spatial variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in Canada’s two largest cities, Montreal and Toronto. Methods: We conducted year-long mobile monitoring campaigns in each city that included evenings and weekends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed final combined models. Results: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1–2 percentage points) for the combined models than the generalized additive models and a greater (approximately 10 percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models were highly correlated with each other and differences between models were explored in sensitivity analyses. Conclusion: Predictions from these models are available to support future epidemiological research examining long-term health impacts of outdoor UFPs and BC.
Predicting spatial variations in annual average outdoor ultrafine particle concentrations in Montreal and Toronto, Canada: Integrating land use regression and deep learning models
Background: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly within cities and long-term exposures to these pollutants have been associated with a variety of adverse health outcomes. Objective: This study integrated multiple approaches to develop new models to estimate within-city spatial variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in Canada’s two largest cities, Montreal and Toronto. Methods: We conducted year-long mobile monitoring campaigns in each city that included evenings and weekends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed final combined models. Results: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1–2 percentage points) for the combined models than the generalized additive models and a greater (approximately 10 percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models were highly correlated with each other and differences between models were explored in sensitivity analyses. Conclusion: Predictions from these models are available to support future epidemiological research examining long-term health impacts of outdoor UFPs and BC.
Predicting spatial variations in annual average outdoor ultrafine particle concentrations in Montreal and Toronto, Canada: Integrating land use regression and deep learning models
Marshall Lloyd (Autor:in) / Arman Ganji (Autor:in) / Junshi Xu (Autor:in) / Alessya Venuta (Autor:in) / Leora Simon (Autor:in) / Mingqian Zhang (Autor:in) / Milad Saeedi (Autor:in) / Shoma Yamanouchi (Autor:in) / Joshua Apte (Autor:in) / Kris Hong (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Enhanced land use regression models for urban fine dust and ultrafine particle concentrations
UB Braunschweig | 2018
|Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects
DOAJ | 2019
|