Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical analysis of torsional tangent rigidity of reinforced concrete waffle slab
Abstract This research work deals with the analysis of torsional tangent rigidity of reinforced concrete waffle slabs by comparisons of the numerical analysis with results of experimental tests, with calculations performed using the ATENA program. This program was specially developed for the calculation of reinforced concrete structures, considering the physical and geometric nonlinear analysis using the finite element method. Numerical analysis considered the tensile strength of the concrete and consequently the fracture energy. Numerical situations were tested to obtain the calibration of the numerical analysis with the laboratory tests. After the calibrations, the results were extrapolated to extreme situations to infer tangent torsion rigidity in new situations. It is concluded that, for waffle slabs, near the rupture, the torsional tangent rigidity should be 5% of the torsional tangent rigidity to the initial torsion. In service, considering one third of the total breaking load, the torsional tangent rigidity should be 85% of the torsional tangent rigidity to the initial twist. This great torsional tangent rigidity in service is another parameter that guarantees the structural efficiency of the waffle slabs and can be used in the most diverse applications of structural engineering.
Numerical analysis of torsional tangent rigidity of reinforced concrete waffle slab
Abstract This research work deals with the analysis of torsional tangent rigidity of reinforced concrete waffle slabs by comparisons of the numerical analysis with results of experimental tests, with calculations performed using the ATENA program. This program was specially developed for the calculation of reinforced concrete structures, considering the physical and geometric nonlinear analysis using the finite element method. Numerical analysis considered the tensile strength of the concrete and consequently the fracture energy. Numerical situations were tested to obtain the calibration of the numerical analysis with the laboratory tests. After the calibrations, the results were extrapolated to extreme situations to infer tangent torsion rigidity in new situations. It is concluded that, for waffle slabs, near the rupture, the torsional tangent rigidity should be 5% of the torsional tangent rigidity to the initial torsion. In service, considering one third of the total breaking load, the torsional tangent rigidity should be 85% of the torsional tangent rigidity to the initial twist. This great torsional tangent rigidity in service is another parameter that guarantees the structural efficiency of the waffle slabs and can be used in the most diverse applications of structural engineering.
Numerical analysis of torsional tangent rigidity of reinforced concrete waffle slab
C. C. NUNES (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rigidity and Strength of Orthotropic Reinforced Concrete Waffle Slabs
British Library Online Contents | 2000
|Numerical analysis of a Waffle slab footing
British Library Conference Proceedings | 2002
|TECHNICAL PAPERS - Rigidity and Strength of Orthotropic Reinforced Concrete Waffle Slabs
Online Contents | 2000
|Behaviour of curved reinforced and prestressed concrete waffle slab bridges.
BASE | 1993
|Concrete pouring plugging method for waffle slab hole
Europäisches Patentamt | 2021
|