Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Shaking Table Test Study on Seismic Performance of Hollow Rectangular Piers
To study the seismic performance of hollow reinforced concrete piers under dynamic loads, nine hollow pier specimens with different stirrup ratios, reinforcement ratios, and axial compression ratios are designed and manufactured. The El Centro wave, Taft wave, and artificial Lanzhou wave are selected as seismic excitation for the shaking table test. The effects of the reinforcement ratio, stirrup ratio, and axial compression ratio on the failure mode, period, damping, acceleration and displacement response, dynamic magnification factor, ductility, and energy dissipation of specimens under different working conditions are studied. The results show that all the nine reinforced concrete piers have good seismic performance. Subjected to ground motion excitation, horizontal through cracks appeared on the pier surface. With the increase of ground motion excitation, the period of piers increases but the maximum period does not exceed 0.62 s, and the damping ratio increases as well and ranges from 0.02 to 0.064. With the increase of the ground motion excitation, the acceleration response of pier specimens increases, the dynamic magnification factor decreases, the displacement ductility coefficient decreases, and the energy dissipation of the specimens increases. The reinforcement ratio, stirrup ratio, and axial compression ratio have different effects on the above parameters. The test results can provide reference for seismic design of hollow rectangular piers and have certain engineering significance and value.
Shaking Table Test Study on Seismic Performance of Hollow Rectangular Piers
To study the seismic performance of hollow reinforced concrete piers under dynamic loads, nine hollow pier specimens with different stirrup ratios, reinforcement ratios, and axial compression ratios are designed and manufactured. The El Centro wave, Taft wave, and artificial Lanzhou wave are selected as seismic excitation for the shaking table test. The effects of the reinforcement ratio, stirrup ratio, and axial compression ratio on the failure mode, period, damping, acceleration and displacement response, dynamic magnification factor, ductility, and energy dissipation of specimens under different working conditions are studied. The results show that all the nine reinforced concrete piers have good seismic performance. Subjected to ground motion excitation, horizontal through cracks appeared on the pier surface. With the increase of ground motion excitation, the period of piers increases but the maximum period does not exceed 0.62 s, and the damping ratio increases as well and ranges from 0.02 to 0.064. With the increase of the ground motion excitation, the acceleration response of pier specimens increases, the dynamic magnification factor decreases, the displacement ductility coefficient decreases, and the energy dissipation of the specimens increases. The reinforcement ratio, stirrup ratio, and axial compression ratio have different effects on the above parameters. The test results can provide reference for seismic design of hollow rectangular piers and have certain engineering significance and value.
Shaking Table Test Study on Seismic Performance of Hollow Rectangular Piers
Yanli Shen (Autor:in) / Bo Wei (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Seismic Performance of Reinforced Concrete Rectangular Hollow Bridge Piers
British Library Conference Proceedings | 2014
|Seismic Performance of Reinforced Concrete Rectangular Hollow Bridge Piers
Tema Archiv | 2013
|