Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Study of Hydrogeochemical Processes on Karst Groundwater Using a Mass Balance Model in the Liulin Spring Area, North China
Exploring the hydrogeochemical processes of karst groundwater has significant meaning for protecting local groundwater systems in semi-arid areas. Taking a typical semi-arid karst groundwater system—the Liulin spring area—as the research region, hydrogeochemical processes from rainfall infiltration to formation of higher total dissolved solids (TDS) water were studied, applying a mass balance model and the prediction of water chemical components in the focus area was explored. The results showed that hydrogeochemical processes dominating chemical components of karst groundwater included lixiviation, cation exchange and mixture. Calcite dissolved during rainfall infiltration processes in recharge area and saturated, then precipitated along the whole flow path. CO2 dissolved significantly along with rainfall infiltration process and outgassed in discharge area and stagnant area. The dissolution of dolomite, gypsum and halite accompanied entire flow path and maximum dissolution load occurred in stagnant area. Mg-Na or Ca-Na exchange prevailed along flow path but exchange types depended on ionic concentration. The mixture between surface water and karst groundwater took place in surface water leakage belt in recharge and discharge area and mixture ratio for surface water ranged from 40% to 70%. TDS of the Liulin springs will increase with decreasing surface water leakage. Conversely, TDS of karst groundwater near Henggou area will decrease accompanied by the continuous discharge of the Henggou artesian well.
A Study of Hydrogeochemical Processes on Karst Groundwater Using a Mass Balance Model in the Liulin Spring Area, North China
Exploring the hydrogeochemical processes of karst groundwater has significant meaning for protecting local groundwater systems in semi-arid areas. Taking a typical semi-arid karst groundwater system—the Liulin spring area—as the research region, hydrogeochemical processes from rainfall infiltration to formation of higher total dissolved solids (TDS) water were studied, applying a mass balance model and the prediction of water chemical components in the focus area was explored. The results showed that hydrogeochemical processes dominating chemical components of karst groundwater included lixiviation, cation exchange and mixture. Calcite dissolved during rainfall infiltration processes in recharge area and saturated, then precipitated along the whole flow path. CO2 dissolved significantly along with rainfall infiltration process and outgassed in discharge area and stagnant area. The dissolution of dolomite, gypsum and halite accompanied entire flow path and maximum dissolution load occurred in stagnant area. Mg-Na or Ca-Na exchange prevailed along flow path but exchange types depended on ionic concentration. The mixture between surface water and karst groundwater took place in surface water leakage belt in recharge and discharge area and mixture ratio for surface water ranged from 40% to 70%. TDS of the Liulin springs will increase with decreasing surface water leakage. Conversely, TDS of karst groundwater near Henggou area will decrease accompanied by the continuous discharge of the Henggou artesian well.
A Study of Hydrogeochemical Processes on Karst Groundwater Using a Mass Balance Model in the Liulin Spring Area, North China
Xiuqing Zheng (Autor:in) / Hongfei Zang (Autor:in) / Yongbo Zhang (Autor:in) / Junfeng Chen (Autor:in) / Fei Zhang (Autor:in) / Yu Shen (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2018
|DOAJ | 2023
|DOAJ | 2023
|