Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Driver Distraction Recognition Using Wearable IMU Sensor Data
Distracted driving has become a major cause of road traffic accidents. There are generally four different types of distractions: manual, visual, auditory, and cognitive. Manual distractions are the most common. Previous studies have used physiological indicators, vehicle behavior parameters, or machine-visual features to support research. However, these technologies are not suitable for an in-vehicle environment. To address this need, this study examined a non-intrusive method for detecting in-transit manual distractions. Wrist kinematics data from 20 drivers were collected using wearable inertial measurement units (IMU) to detect four common gestures made while driving: dialing a hand-held cellular phone, adjusting the audio or climate controls, reaching for an object in the back seat, and maneuvering the steering wheel to stay in the lane. The study proposed a progressive classification model for gesture recognition, including two major time-based sequencing components and a Hidden Markov Model (HMM). Results show that the accuracy for detecting disturbances was 95.52%. The accuracy associated with recognizing manual distractions reached 96.63%, using the proposed model. The overall model has the advantages of being sensitive to perceptions of motion, effectively solving the problem of a fall-off in recognition performance due to excessive disturbances in motion samples.
Driver Distraction Recognition Using Wearable IMU Sensor Data
Distracted driving has become a major cause of road traffic accidents. There are generally four different types of distractions: manual, visual, auditory, and cognitive. Manual distractions are the most common. Previous studies have used physiological indicators, vehicle behavior parameters, or machine-visual features to support research. However, these technologies are not suitable for an in-vehicle environment. To address this need, this study examined a non-intrusive method for detecting in-transit manual distractions. Wrist kinematics data from 20 drivers were collected using wearable inertial measurement units (IMU) to detect four common gestures made while driving: dialing a hand-held cellular phone, adjusting the audio or climate controls, reaching for an object in the back seat, and maneuvering the steering wheel to stay in the lane. The study proposed a progressive classification model for gesture recognition, including two major time-based sequencing components and a Hidden Markov Model (HMM). Results show that the accuracy for detecting disturbances was 95.52%. The accuracy associated with recognizing manual distractions reached 96.63%, using the proposed model. The overall model has the advantages of being sensitive to perceptions of motion, effectively solving the problem of a fall-off in recognition performance due to excessive disturbances in motion samples.
Driver Distraction Recognition Using Wearable IMU Sensor Data
Wencai Sun (Autor:in) / Yihao Si (Autor:in) / Mengzhu Guo (Autor:in) / Shiwu Li (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
In-Vehicle Technologies and Driver Distraction
Online Contents | 2011
Driver Distraction: Evaluation with Event Detection Paradigm
British Library Online Contents | 2003
|The Building Blocks of Driver Distraction Policy
Online Contents | 2011
|Examination of Limitations Associated with Observing Driver Distraction
British Library Online Contents | 2014
|Book Review: Driver Distraction: Theory, Effects, and Mitigation
Online Contents | 2011
|