Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Aqueous Mercury Removal with Carbonaceous and Iron Sulfide Sorbents and Their Applicability as Thin-Layer Caps in Mercury-Contaminated Estuary Sediment
This study aimed to investigate the Hg removal efficiency of iron sulfide (FeS), sulfurized activated carbon (SAC), and raw activated carbon (AC) sorbents influenced by salinity and dissolved organic matter (DOM), and the effectiveness of these sorbents as thin layer caps on Hg-contaminated sediment remediation via microcosm experiments to decrease the risk of release. In the batch adsorption experiments, FeS showed the greatest Hg2+ removal efficiencies, followed by SAC and AC. The effect of salinity levels on FeS was insignificant. In contrast, the Hg2+ removal efficiency of AC and SAC increased as increasing the salinity levels. The presence of DOM tended to decrease Hg removal efficiency of sorbents. Microcosm studies also showed that FeS had the greatest Hg sorption in both freshwater and estuary water; furthermore, the methylmercury (MeHg) removal ability of sorbents was greater in the freshwater than that in the estuary water. Notably, for the microcosms without capping, the overlying water MeHg in the estuary microcosm (0.14−1.01 ng/L) was far lesser than that in the freshwater microcosms (2.26−11.35 ng/L). Therefore, Hg compounds in the freshwater may be more bioavailable to microorganisms in methylated phase as compared to those in the estuary water. Overall, FeS showed the best Hg removal efficiency, resistance to salinity, and only slightly affected by DOM in aqueous adsorption experiments. Additionally, in the microcosms, AC showed as the best MeHg adsorber that help inhibiting the release of MeHg into overlying and decreasing the risk to the aqueous system.
Aqueous Mercury Removal with Carbonaceous and Iron Sulfide Sorbents and Their Applicability as Thin-Layer Caps in Mercury-Contaminated Estuary Sediment
This study aimed to investigate the Hg removal efficiency of iron sulfide (FeS), sulfurized activated carbon (SAC), and raw activated carbon (AC) sorbents influenced by salinity and dissolved organic matter (DOM), and the effectiveness of these sorbents as thin layer caps on Hg-contaminated sediment remediation via microcosm experiments to decrease the risk of release. In the batch adsorption experiments, FeS showed the greatest Hg2+ removal efficiencies, followed by SAC and AC. The effect of salinity levels on FeS was insignificant. In contrast, the Hg2+ removal efficiency of AC and SAC increased as increasing the salinity levels. The presence of DOM tended to decrease Hg removal efficiency of sorbents. Microcosm studies also showed that FeS had the greatest Hg sorption in both freshwater and estuary water; furthermore, the methylmercury (MeHg) removal ability of sorbents was greater in the freshwater than that in the estuary water. Notably, for the microcosms without capping, the overlying water MeHg in the estuary microcosm (0.14−1.01 ng/L) was far lesser than that in the freshwater microcosms (2.26−11.35 ng/L). Therefore, Hg compounds in the freshwater may be more bioavailable to microorganisms in methylated phase as compared to those in the estuary water. Overall, FeS showed the best Hg removal efficiency, resistance to salinity, and only slightly affected by DOM in aqueous adsorption experiments. Additionally, in the microcosms, AC showed as the best MeHg adsorber that help inhibiting the release of MeHg into overlying and decreasing the risk to the aqueous system.
Aqueous Mercury Removal with Carbonaceous and Iron Sulfide Sorbents and Their Applicability as Thin-Layer Caps in Mercury-Contaminated Estuary Sediment
Boon-Lek Ch’ng (Autor:in) / Che-Jung Hsu (Autor:in) / Yu Ting (Autor:in) / Ying-Lin Wang (Autor:in) / Chi Chen (Autor:in) / Tien-Chin Chang (Autor:in) / Hsing-Cheng Hsi (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Mercury partition in contaminated sediments from Tagus estuary
British Library Online Contents | 2004
|Evaluations of ``Concrete-Friendly'' Mercury Sorbents
British Library Conference Proceedings | 2005
|Inherently concrete-compatible carbon sorbents for mercury removal from flue gas
Europäisches Patentamt | 2016
|INHERENTLY CONCRETE-COMPATIBLE CARBON SORBENTS FOR MERCURY REMOVAL FROM FLUE GAS
Europäisches Patentamt | 2016
|