Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Financial and Energetic Optimization of Greek Buildings Insulation
The most important parameter in the design of the building envelope is the insulation thickness, because it dramatically influences the heating and cooling loads. The objective of this study is the investigation of different insulation scenarios for the four climate zones of Greece and, more specifically, the cities Heraklion, Athens, Thessaloniki, and Florina. The insulation thickness is examined up to 8 cm and the optimum thickness is determined by the minimization of the simple payback period in order to design a cost-effective system. Moreover, the primary energy consumption, the heating/cooling loads, and the equivalent CO2 emissions are calculated. Furthermore, a multi-objective evaluation procedure of the various insulated scenarios is conducted in order to show the relationship between the energetic and the financial optimization. Generally, it is found that the optimum insulation thickness is around 4 cm for all the climate zones using financial criteria, while the energy criteria indicate higher thicknesses. These results can be applied to the suitable design of Greek residential buildings.
Financial and Energetic Optimization of Greek Buildings Insulation
The most important parameter in the design of the building envelope is the insulation thickness, because it dramatically influences the heating and cooling loads. The objective of this study is the investigation of different insulation scenarios for the four climate zones of Greece and, more specifically, the cities Heraklion, Athens, Thessaloniki, and Florina. The insulation thickness is examined up to 8 cm and the optimum thickness is determined by the minimization of the simple payback period in order to design a cost-effective system. Moreover, the primary energy consumption, the heating/cooling loads, and the equivalent CO2 emissions are calculated. Furthermore, a multi-objective evaluation procedure of the various insulated scenarios is conducted in order to show the relationship between the energetic and the financial optimization. Generally, it is found that the optimum insulation thickness is around 4 cm for all the climate zones using financial criteria, while the energy criteria indicate higher thicknesses. These results can be applied to the suitable design of Greek residential buildings.
Financial and Energetic Optimization of Greek Buildings Insulation
Georgios Mitsopoulos (Autor:in) / Evangelos Bellos (Autor:in) / Christos Tzivanidis (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Engineering Index Backfile | 1926
|A Model for the Energetic-Economic Optimization of Office Buildings
Taylor & Francis Verlag | 2007
|A Model for the Energetic-Economic Optimization of Office Buildings
British Library Online Contents | 2007
|A Model for the Energetic-Economic Optimization of Office Buildings
Online Contents | 2007
|