Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells
So far, the human health impacts of nano- and microplastics are poorly understood. Thus, we investigated whether nanoplastics exposure induces inflammatory processes in primary human monocytes and monocyte-derived dendritic cells. We exposed these cells in vitro to nanoplastics of different shapes (irregular vs. spherical), sizes (50–310 nm and polydisperse mixtures) and polymer types (polystyrene; polymethyl methacrylate; polyvinyl chloride, PVC) using concentrations of 30–300 particles cell−1. Our results show that irregular PVC particles induce the strongest cytokine release of these nanoplastics. Irregular polystyrene triggered a significantly higher pro-inflammatory response compared to spherical nanoplastics. The contribution of chemicals leaching from the particles was minor. The effects were concentration-dependent but varied markedly between cell donors. We conclude that nanoplastics exposure can provoke human immune cells to secrete cytokines as key initiators of inflammation. This response is specific to certain polymers (PVC) and particle shapes (fragments). Accordingly, nanoplastics cannot be considered one homogenous entity when assessing their health implications and the use of spherical polystyrene nanoplastics may underestimate their inflammatory effects.
Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells
So far, the human health impacts of nano- and microplastics are poorly understood. Thus, we investigated whether nanoplastics exposure induces inflammatory processes in primary human monocytes and monocyte-derived dendritic cells. We exposed these cells in vitro to nanoplastics of different shapes (irregular vs. spherical), sizes (50–310 nm and polydisperse mixtures) and polymer types (polystyrene; polymethyl methacrylate; polyvinyl chloride, PVC) using concentrations of 30–300 particles cell−1. Our results show that irregular PVC particles induce the strongest cytokine release of these nanoplastics. Irregular polystyrene triggered a significantly higher pro-inflammatory response compared to spherical nanoplastics. The contribution of chemicals leaching from the particles was minor. The effects were concentration-dependent but varied markedly between cell donors. We conclude that nanoplastics exposure can provoke human immune cells to secrete cytokines as key initiators of inflammation. This response is specific to certain polymers (PVC) and particle shapes (fragments). Accordingly, nanoplastics cannot be considered one homogenous entity when assessing their health implications and the use of spherical polystyrene nanoplastics may underestimate their inflammatory effects.
Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells
Annkatrin Weber (Autor:in) / Anja Schwiebs (Autor:in) / Helene Solhaug (Autor:in) / Jørgen Stenvik (Autor:in) / Asbjørn M. Nilsen (Autor:in) / Martin Wagner (Autor:in) / Borna Relja (Autor:in) / Heinfried H. Radeke (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|British Library Online Contents | 2013
|DOAJ | 2023
|Nanoplastics in Agroecosystem and Phytotoxicity
Wiley | 2023
|