Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation Method of Shaft Structure Stability in Coal Mine Raise Boring Engineering
Raise boring method is one of the key technologies for coal mine shaft construction. The typical engineering of raise boring method is two types: large diameter shafts and small diameter gas pipeline shafts. Ensuring the stability of these two types of shaft structures is a key issue that determines the quality of raise boring engineering. In order to solve this problem, a method of evaluating the stability of shaft structure constructed by raise boring method is proposed in this paper. First, for large-diameter shafts, it is clear that the stability of surrounding rock is the key factor. Based on the strength reduction method, the stability coefficient of surrounding rock k0=2.5 is proposed. Secondly, for the small diameter gas pipe shaft, it is clear that the stability of the gas pipe under the pressure of the filling material is the key factor. The functional equations of allowable compressive stress of the pipe material, the initial deviation of the gas pipes and the ultimate pressure are established, and a method with results biased towards safety is proposed for the design and verification of gas pipes.
Evaluation Method of Shaft Structure Stability in Coal Mine Raise Boring Engineering
Raise boring method is one of the key technologies for coal mine shaft construction. The typical engineering of raise boring method is two types: large diameter shafts and small diameter gas pipeline shafts. Ensuring the stability of these two types of shaft structures is a key issue that determines the quality of raise boring engineering. In order to solve this problem, a method of evaluating the stability of shaft structure constructed by raise boring method is proposed in this paper. First, for large-diameter shafts, it is clear that the stability of surrounding rock is the key factor. Based on the strength reduction method, the stability coefficient of surrounding rock k0=2.5 is proposed. Secondly, for the small diameter gas pipe shaft, it is clear that the stability of the gas pipe under the pressure of the filling material is the key factor. The functional equations of allowable compressive stress of the pipe material, the initial deviation of the gas pipes and the ultimate pressure are established, and a method with results biased towards safety is proposed for the design and verification of gas pipes.
Evaluation Method of Shaft Structure Stability in Coal Mine Raise Boring Engineering
JING Guo-ye (Autor:in) / GAO Feng (Autor:in) / CHENG Shou-ye (Autor:in) / HAN Bo (Autor:in) / LI Junfeng (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Deep surface soil stratum large-diameter shaft raise-boring construction method
Europäisches Patentamt | 2022
|Introduction of Vertical Mine Shaft Sinking by Full Section Boring Method
British Library Conference Proceedings | 2012
|Pilot bits for more efficient raise boring
Online Contents | 2016