Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Air stream velocity modelling in multichannel spiral cyclone separator
Numerical modelling problem is investigated in a gas aerodynamics multichannel spiral cyclone separator with a tangential inflow. Experimental and theoretical papers analysing cyclone separator with particularly complex turbulent flow were reviewed. The three-dimensional transport differential equations for incompressible laminar and turbulent flow inside the cyclone separator were presented. They were numerically solved by finite volume method using the Re-Normalisation Group (hereinafter RNG) k-ε turbulence model. The numerical air flow movement was modelled in cyclone separator with the following dimensions: 0.95 m height, 0.330 m diameter, 0.88 m height of spiral-cylindrical part, 0.39 m height of conical part, inflow dimensions (on the side of cylindrical part) according to the drawings were a × b = 28 × 95 mm. The mathematical model of air flow movement in cyclone separator was composed by Navier-Stokes (Reynolds) as the three-dimensional differential equation system. The modelling results were obtained by the tangential and axial velocity profiles in cyclone separator using RNG k-ε turbulence model, the inflow velocity from 4.1 m/s to 15.4 m/s coincided well with the experimental results. This is the first article testing for multichannel cyclone and determined distributions of aerodynamic parameters. The absolute error between experimental and modelling results changed from 0.01 to 0.24 units.
Air stream velocity modelling in multichannel spiral cyclone separator
Numerical modelling problem is investigated in a gas aerodynamics multichannel spiral cyclone separator with a tangential inflow. Experimental and theoretical papers analysing cyclone separator with particularly complex turbulent flow were reviewed. The three-dimensional transport differential equations for incompressible laminar and turbulent flow inside the cyclone separator were presented. They were numerically solved by finite volume method using the Re-Normalisation Group (hereinafter RNG) k-ε turbulence model. The numerical air flow movement was modelled in cyclone separator with the following dimensions: 0.95 m height, 0.330 m diameter, 0.88 m height of spiral-cylindrical part, 0.39 m height of conical part, inflow dimensions (on the side of cylindrical part) according to the drawings were a × b = 28 × 95 mm. The mathematical model of air flow movement in cyclone separator was composed by Navier-Stokes (Reynolds) as the three-dimensional differential equation system. The modelling results were obtained by the tangential and axial velocity profiles in cyclone separator using RNG k-ε turbulence model, the inflow velocity from 4.1 m/s to 15.4 m/s coincided well with the experimental results. This is the first article testing for multichannel cyclone and determined distributions of aerodynamic parameters. The absolute error between experimental and modelling results changed from 0.01 to 0.24 units.
Air stream velocity modelling in multichannel spiral cyclone separator
Petras Vaitiekūnas (Autor:in) / Egidijus Petraitis (Autor:in) / Albertas Venslovas (Autor:in) / Aleksandras Chlebnikovas (Autor:in)
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A Study of the Radal Velocity in Cyclone Separator
British Library Conference Proceedings | 1994
|Experimental Study of the Natural Cyclone Length of a Cyclone Separator
British Library Online Contents | 2010
|Archimedes spiral runner type cyclone separation well
Europäisches Patentamt | 2021
|Flow Field Analysis of an Electrostatic Cyclone Separator
British Library Online Contents | 2002
|Experimental investigation of processes in acoustic cyclone separator
British Library Online Contents | 2014
|