Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Unexpected changes in source apportioned results derived from different ambient VOC metrics
Although most source apportionments of VOCs use mixing ratios, about 23 % of published studies use mass concentrations. Thus, systematically exploring the changes in VOC source apportioned results caused by metric differences is important to assess the differences in key precursor apportionment results given the observed increases in O3 pollution situation. Different monitoring instruments measured hourly VOC volumetric concentrations in three typical Chinese cities (i.e., Qingdao, Shijiazhuang, and Zhumadian). Converting volumetric to mass concentrations under standard and/or actual temperature–pressure conditions, VOC values with different metrics were obtained. The impacts of different metrics on the source apportionments were then investigated. Compared to the positive matrix factorization of the volumetric data (VC-PMF), the VOC species concentrations with low relative molecular mass (RMM) in the factor profiles substantially decreased in mass data analyses (MC-PMF). However, those species with high RMM substantially increased. There were no substantial differences in the apportioned source contributions based on standard and actual condition mass concentrations. However, the high-low rankings of percent contributions apportioned using the volumetric and mass data produced substantial differences. Compared with the VC-PMF results, the percent contributions of sources dominated by species with low RMM (e.g., natural gas usage and mixed sources containing natural gas usage) apportioned by MC-PMF decreased, while those of sources that emitted high RMM species (e.g., solvent usage and mixed sources containing solvent usage) increased. Source apportionments based on the volumetric concentration data had more practical significance compared to the mass concentration data results for control strategy development since the mass data analyses created issues.
Unexpected changes in source apportioned results derived from different ambient VOC metrics
Although most source apportionments of VOCs use mixing ratios, about 23 % of published studies use mass concentrations. Thus, systematically exploring the changes in VOC source apportioned results caused by metric differences is important to assess the differences in key precursor apportionment results given the observed increases in O3 pollution situation. Different monitoring instruments measured hourly VOC volumetric concentrations in three typical Chinese cities (i.e., Qingdao, Shijiazhuang, and Zhumadian). Converting volumetric to mass concentrations under standard and/or actual temperature–pressure conditions, VOC values with different metrics were obtained. The impacts of different metrics on the source apportionments were then investigated. Compared to the positive matrix factorization of the volumetric data (VC-PMF), the VOC species concentrations with low relative molecular mass (RMM) in the factor profiles substantially decreased in mass data analyses (MC-PMF). However, those species with high RMM substantially increased. There were no substantial differences in the apportioned source contributions based on standard and actual condition mass concentrations. However, the high-low rankings of percent contributions apportioned using the volumetric and mass data produced substantial differences. Compared with the VC-PMF results, the percent contributions of sources dominated by species with low RMM (e.g., natural gas usage and mixed sources containing natural gas usage) apportioned by MC-PMF decreased, while those of sources that emitted high RMM species (e.g., solvent usage and mixed sources containing solvent usage) increased. Source apportionments based on the volumetric concentration data had more practical significance compared to the mass concentration data results for control strategy development since the mass data analyses created issues.
Unexpected changes in source apportioned results derived from different ambient VOC metrics
Yutong Wu (Autor:in) / Baoshuang Liu (Autor:in) / He Meng (Autor:in) / Fuquan Wang (Autor:in) / Sen Li (Autor:in) / Man Xu (Autor:in) / Laiyuan Shi (Autor:in) / Songfeng Zhang (Autor:in) / Yinchang Feng (Autor:in) / Philip K. Hopke (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Unexpected changes in source apportioned results derived from different ambient VOC metrics
Elsevier | 2024
|When Damages Are Apportioned, Everyone Loses
ASCE | 2021
|Damages for late construction apportioned
Wiley | 1981
The recent and future health burden of the U.S. mobile sector apportioned by source
DOAJ | 2020
|