Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Riparian Land Cover, Water Temperature Variability, and Thermal Stress for Aquatic Species in Urban Streams
Thermal regime warming and increased variability can result in human developed watersheds due to runoff over impervious surfaces and influence of stormwater pipes. This study quantified relationships between tree canopy, impervious surface, and water temperature in stream sites with 4 to 62% impervious land cover in their “loggersheds” to predict water temperature metrics relevant to aquatic species thermal stress thresholds. This study identified significant (≥0.7, p < 0.05) negative correlations between water temperature and percent tree canopy in the 5 m riparian area and positive correlations between water temperature and total length of stormwater pipe in the loggershed. Mixed-effects models predicted that tree canopy cover in the 5 m riparian area would reduce water temperatures 0.01 to 6 °C and total length of stormwater pipes in the loggershed would increase water temperatures 0.01 to 2.6 °C. To our knowledge, this is the first time that the relationship between stormwater pipes and water temperature metrics has been explored to better understand thermal dynamics in urban watersheds. The results highlight important aspects of thermal habitat quality and water temperature variability for aquatic species living in urban streams based on thermal thresholds relevant to species metabolism, growth, and life history.
Riparian Land Cover, Water Temperature Variability, and Thermal Stress for Aquatic Species in Urban Streams
Thermal regime warming and increased variability can result in human developed watersheds due to runoff over impervious surfaces and influence of stormwater pipes. This study quantified relationships between tree canopy, impervious surface, and water temperature in stream sites with 4 to 62% impervious land cover in their “loggersheds” to predict water temperature metrics relevant to aquatic species thermal stress thresholds. This study identified significant (≥0.7, p < 0.05) negative correlations between water temperature and percent tree canopy in the 5 m riparian area and positive correlations between water temperature and total length of stormwater pipe in the loggershed. Mixed-effects models predicted that tree canopy cover in the 5 m riparian area would reduce water temperatures 0.01 to 6 °C and total length of stormwater pipes in the loggershed would increase water temperatures 0.01 to 2.6 °C. To our knowledge, this is the first time that the relationship between stormwater pipes and water temperature metrics has been explored to better understand thermal dynamics in urban watersheds. The results highlight important aspects of thermal habitat quality and water temperature variability for aquatic species living in urban streams based on thermal thresholds relevant to species metabolism, growth, and life history.
Riparian Land Cover, Water Temperature Variability, and Thermal Stress for Aquatic Species in Urban Streams
Anne Timm (Autor:in) / Valerie Ouellet (Autor:in) / Melinda Daniels (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Riparian Forest Impacts on Aquatic Habitat Variability
British Library Conference Proceedings | 2005
|Riparian Forest Impacts on Aquatic Habitat Variability
British Library Conference Proceedings | 2005
|Rivers, Streams, and Riparian Boundaries
Online Contents | 1996
|Are plant communities mainly determined by anthropogenic land cover along urban riparian corridors?
Online Contents | 2016
|Aquatic biodiversity loss in Andean urban streams
Online Contents | 2022
|