Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design
Within a disruptively changing environment, design of power systems becomes a complex task. Meeting multi-criteria requirements with increasing degrees of freedom in design and simultaneously decreasing technical expertise strengthens the need for multi-objective optimization (MOO) making use of algorithms and virtual prototyping. In this context, we present Gaussian Process Regression based Multi-Objective Bayesian Optimization (GPR-MOBO) with special emphasis on its profound theoretical background. A detailed mathematical framework is provided to derive a GPR-MOBO computer implementable algorithm. We quantify GPR-MOBO effectiveness and efficiency by hypervolume and the number of required computationally expensive simulations to identify Pareto-optimal design solutions, respectively. For validation purposes, we benchmark our GPR-MOBO implementation based on a mathematical test function with analytically known Pareto front and compare results to those of well-known algorithms NSGA-II and pure Latin Hyper Cube Sampling. To rule out effects of randomness, we include statistical evaluations. GPR-MOBO turnes out as an effective and efficient approach with superior character versus state-of-the art approaches and increasing value-add when simulations are computationally expensive and the number of design degrees of freedom is high. Finally, we provide an example of GPR-MOBO based power system design and optimization that demonstrates both the methodology itself and its performance benefits.
Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design
Within a disruptively changing environment, design of power systems becomes a complex task. Meeting multi-criteria requirements with increasing degrees of freedom in design and simultaneously decreasing technical expertise strengthens the need for multi-objective optimization (MOO) making use of algorithms and virtual prototyping. In this context, we present Gaussian Process Regression based Multi-Objective Bayesian Optimization (GPR-MOBO) with special emphasis on its profound theoretical background. A detailed mathematical framework is provided to derive a GPR-MOBO computer implementable algorithm. We quantify GPR-MOBO effectiveness and efficiency by hypervolume and the number of required computationally expensive simulations to identify Pareto-optimal design solutions, respectively. For validation purposes, we benchmark our GPR-MOBO implementation based on a mathematical test function with analytically known Pareto front and compare results to those of well-known algorithms NSGA-II and pure Latin Hyper Cube Sampling. To rule out effects of randomness, we include statistical evaluations. GPR-MOBO turnes out as an effective and efficient approach with superior character versus state-of-the art approaches and increasing value-add when simulations are computationally expensive and the number of design degrees of freedom is high. Finally, we provide an example of GPR-MOBO based power system design and optimization that demonstrates both the methodology itself and its performance benefits.
Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design
Nicolai Palm (Autor:in) / Markus Landerer (Autor:in) / Herbert Palm (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
power system design , multi-objective optimization , gaussian process regression , Bayesian Optimization , expected hypervolume improvement , squared exponential kernel , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Deep Gaussian process for multi-objective Bayesian optimization
Springer Verlag | 2023
|