Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Detection of Cherry Tree Crown Based on Improved LA-dpv3+ Algorithm
Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation. This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based on UAV image data, with a focus on enhancing feature representation through the implementation of an attention mechanism. The attention mechanism module was introduced to the encoder stage of the DeepLabV3+ architecture, which improved the network’s detection accuracy and robustness. Specifically, we developed a diagonal discrete cosine transform feature strategy within the attention convolution module to extract finer details of canopy information from multiple frequency components. The proposed model was constructed based on a lightweight DeepLabv3+ network architecture that incorporates a MobileNetv2 backbone, effectively reducing computational costs. The results demonstrate that our proposed method achieved a balance between computational cost and the quality of results when compared to competing approaches. Our model’s accuracy exceeded 89% while maintaining a modest model size of only 46.8 MB. The overall performance indicated that with the help of a neural network, segmentation failures were notably reduced, particularly in high-density weed conditions, resulting in significant increases in accuracy (ACC), F1-score, and intersection over union (IOU), which were increased by 5.44, 3.39, and 8.62%, respectively. The method proposed in this paper may be applied to future image-based applications and contribute to automated orchard management.
Detection of Cherry Tree Crown Based on Improved LA-dpv3+ Algorithm
Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation. This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based on UAV image data, with a focus on enhancing feature representation through the implementation of an attention mechanism. The attention mechanism module was introduced to the encoder stage of the DeepLabV3+ architecture, which improved the network’s detection accuracy and robustness. Specifically, we developed a diagonal discrete cosine transform feature strategy within the attention convolution module to extract finer details of canopy information from multiple frequency components. The proposed model was constructed based on a lightweight DeepLabv3+ network architecture that incorporates a MobileNetv2 backbone, effectively reducing computational costs. The results demonstrate that our proposed method achieved a balance between computational cost and the quality of results when compared to competing approaches. Our model’s accuracy exceeded 89% while maintaining a modest model size of only 46.8 MB. The overall performance indicated that with the help of a neural network, segmentation failures were notably reduced, particularly in high-density weed conditions, resulting in significant increases in accuracy (ACC), F1-score, and intersection over union (IOU), which were increased by 5.44, 3.39, and 8.62%, respectively. The method proposed in this paper may be applied to future image-based applications and contribute to automated orchard management.
Detection of Cherry Tree Crown Based on Improved LA-dpv3+ Algorithm
Zhenzhen Cheng (Autor:in) / Yifan Cheng (Autor:in) / Meng Li (Autor:in) / Xiangxiang Dong (Autor:in) / Shoufu Gong (Autor:in) / Xiaoxiao Min (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Multi-class predictive template for tree crown detection
Online Contents | 2012
|A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data
Online Contents | 2015
|British Library Online Contents | 1998
Human influence increases the likelihood of extremely early cherry tree flowering in Kyoto
DOAJ | 2022
|