Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Out-of-Plane Design Equations for Confined Masonry Walls
Nowadays there is still a lack of requirements for the out-of-plane design of confined masonry walls. Current code requirements are mainly based on the in-plane behavior of those walls. This research is divided into two parts. In the first part, two confined walls subjected to out-of-plane uniform loads were tested in the laboratory. Confining elements with minimum cross-section dimensions and wall aspect ratios smaller than one were considered. The variable studied was the wall length. Out-of-plane load—displacement curves of walls were obtained. In the second part, two design equations were developed to determine the out-of-plane strength of confined walls. A design equation was developed to determine the corresponding in-plane forces transferred to the confining elements. The out-of-plane strength of 6912 walls was determined using a computer program based on the bidirectional strut method. A parametric analysis was carried out for the out-of-plane strength considering different variables. Multiple linear regression analyses were carried out to propose out-of-plane strength design equations. It was concluded that the experimental out-of-plane strength increased, and the wall failure type changed as the wall length decreased. In addition, the experimental out-of-plane strength of walls was well predicted with both out-of-plane design equations.
Out-of-Plane Design Equations for Confined Masonry Walls
Nowadays there is still a lack of requirements for the out-of-plane design of confined masonry walls. Current code requirements are mainly based on the in-plane behavior of those walls. This research is divided into two parts. In the first part, two confined walls subjected to out-of-plane uniform loads were tested in the laboratory. Confining elements with minimum cross-section dimensions and wall aspect ratios smaller than one were considered. The variable studied was the wall length. Out-of-plane load—displacement curves of walls were obtained. In the second part, two design equations were developed to determine the out-of-plane strength of confined walls. A design equation was developed to determine the corresponding in-plane forces transferred to the confining elements. The out-of-plane strength of 6912 walls was determined using a computer program based on the bidirectional strut method. A parametric analysis was carried out for the out-of-plane strength considering different variables. Multiple linear regression analyses were carried out to propose out-of-plane strength design equations. It was concluded that the experimental out-of-plane strength increased, and the wall failure type changed as the wall length decreased. In addition, the experimental out-of-plane strength of walls was well predicted with both out-of-plane design equations.
Out-of-Plane Design Equations for Confined Masonry Walls
Luis Fernandez-Baqueiro (Autor:in) / Jorge Varela-Rivera (Autor:in) / Joel Moreno-Herrera (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Out-of-Plane Design Procedure for Confined Masonry Walls
ASCE | 2015
|Out-of-Plane Strength of Confined Masonry Walls
ASCE | 2012
|Out-of-plane behaviour of confined masonry walls
Online Contents | 2011
|Out-of-Plane Strength of Confined Masonry Walls
British Library Online Contents | 2012
|Seismic Design of Confined Masonry Walls
British Library Conference Proceedings | 1996
|