Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Evaluation of Conjugate Flaws on Rock Dynamic Fracturing
The fracture behaviors of rocks under dynamic loading are significantly affected by flaws. Understanding regarding this fundamental mechanism of flaw-induced dynamic fracturing could aid in reducing dynamic geohazards in deep rock engineering. In this study, a series of dynamic loading experiments are conducted on conjugate flawed white sandstone specimens to study the effect of the geometric configuration of flaws on dynamic fracturing. The results show that the geometry configuration of flaws and the loading conditions both strongly affect cracking and failure behaviors. Two types of shear cracks and three types of tensile cracks are observed, four coalescence patterns are identified, and the global failure modes of rock are usually coupled with two or more coalescence patterns. The inhibiting and enhancing mechanism of flaws in regards to potential shear fracture are obtained. These two failure mechanisms depend on the angular relationship between the flaws and the potential shear strain field. The “guiding effect” of the flaws results in the deviation and deformation of shear cracks. Moreover, it is found that the loading condition dominates the fracture tendency of rock macroscopically, while the geometric setting of flaws significantly affects the fracture behavior and failure mode locally.
Experimental Evaluation of Conjugate Flaws on Rock Dynamic Fracturing
The fracture behaviors of rocks under dynamic loading are significantly affected by flaws. Understanding regarding this fundamental mechanism of flaw-induced dynamic fracturing could aid in reducing dynamic geohazards in deep rock engineering. In this study, a series of dynamic loading experiments are conducted on conjugate flawed white sandstone specimens to study the effect of the geometric configuration of flaws on dynamic fracturing. The results show that the geometry configuration of flaws and the loading conditions both strongly affect cracking and failure behaviors. Two types of shear cracks and three types of tensile cracks are observed, four coalescence patterns are identified, and the global failure modes of rock are usually coupled with two or more coalescence patterns. The inhibiting and enhancing mechanism of flaws in regards to potential shear fracture are obtained. These two failure mechanisms depend on the angular relationship between the flaws and the potential shear strain field. The “guiding effect” of the flaws results in the deviation and deformation of shear cracks. Moreover, it is found that the loading condition dominates the fracture tendency of rock macroscopically, while the geometric setting of flaws significantly affects the fracture behavior and failure mode locally.
Experimental Evaluation of Conjugate Flaws on Rock Dynamic Fracturing
Ziyun Li (Autor:in) / Song Xie (Autor:in) / Qianghui Song (Autor:in) / Peiyong Wang (Autor:in) / Dongyan Liu (Autor:in) / Kaixi Xue (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Quantitative evaluation of rock fracturing
Engineering Index Backfile | 1964
|Springer Verlag | 2024
|Reinforcement of rock mass with cross-flaws using rock bolt
British Library Online Contents | 2016
|Reinforcement of rock mass with cross-flaws using rock bolt
British Library Online Contents | 2016
|