Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake
A recent dramatic decline in water level during the dry season in China’s largest freshwater lake (Lake Poyang) significantly influenced water availability and biogeochemical processes. To learn the potential causes of water level decline, this study investigated the hydrodynamic response to bathymetric changes during three typical hydrological years by scenario simulation using Environmental Fluid Dynamics Code (EFDC). The simulation results indicated that bathymetric changes resulted in a water level decrease during a low water level period. Inter-annual variation in the decrease rate implied that water level in typical dry and wet years were influenced more significantly than that in moderate hydrological years. A spatial gradient in the distribution of water level changes was also observed, which was mainly concentrated in the main channel. Water velocities also slowed down, weakly corresponding to the decrease in water level during the low water level period. Overall, bathymetric changes caused by sand mining contributed to water level and velocity variations, influencing the stability and sustainability of the lake ecosystem. This study can potentially enhance our understanding of the hydrodynamic processes in Lake Poyang and support water resource management.
Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake
A recent dramatic decline in water level during the dry season in China’s largest freshwater lake (Lake Poyang) significantly influenced water availability and biogeochemical processes. To learn the potential causes of water level decline, this study investigated the hydrodynamic response to bathymetric changes during three typical hydrological years by scenario simulation using Environmental Fluid Dynamics Code (EFDC). The simulation results indicated that bathymetric changes resulted in a water level decrease during a low water level period. Inter-annual variation in the decrease rate implied that water level in typical dry and wet years were influenced more significantly than that in moderate hydrological years. A spatial gradient in the distribution of water level changes was also observed, which was mainly concentrated in the main channel. Water velocities also slowed down, weakly corresponding to the decrease in water level during the low water level period. Overall, bathymetric changes caused by sand mining contributed to water level and velocity variations, influencing the stability and sustainability of the lake ecosystem. This study can potentially enhance our understanding of the hydrodynamic processes in Lake Poyang and support water resource management.
Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake
Lingyan Qi (Autor:in) / Jiacong Huang (Autor:in) / Junfeng Gao (Autor:in) / Zhen Cui (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2014
|DOAJ | 2019
|Dramatic variations in emergent wetland area in China's largest freshwater lake, Poyang Lake
British Library Online Contents | 2016
|Dramatic variations in emergent wetland area in China's largest freshwater lake, Poyang Lake
British Library Online Contents | 2016
|Recent declines in China’s largest freshwater lake: trend or regime shift?
IOP Institute of Physics | 2013
|