Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data
In this study, methods are proposed for analyzing the susceptibility of forest stands to attacks by forest insects on the basis of Earth remote sensing data. As an indicator of the state of forest stands, we proposed to use a parameter of the sensitivity of a vegetation index (normalized difference vegetation index; NDVI) during a vegetative period to changes in the radiative temperature of the territory (land surface temperature; LST) determined from satellite data of the Terra/Aqua system. The indicator was calculated as a spectrum of a response function in an integral equation linking changes of NDVI to those of LST. Backtesting was carried out using data from two outbreaks of the Siberian silk moth Dendrolimus sibiricus Tschetv. and outbreaks of the white mottled sawyer Monochamus urussovi Fischer and of the four-eyed fir bark beetle Polygraphus proximus Blandford in taiga forests of Krasnoyarsk Territory in Russia. In addition, the state of fir stands in the year 2023 was examined when damage to the forest stands was not yet noticeable, but Siberian silk moth adults were found in pheromone traps. It was shown that the proposed indicator of susceptibility of forest stands changed significantly 2–3 years before the pest outbreak in outbreak foci of the studied areas. Thus, the proposed indicator can be used to predict outbreaks of insect pests. The proposed approach differs from commonly used remote sensing methods in that, rather than using absolute values of remote indicators (such as, for example, NDVI), it focuses on indicators of the susceptibility of these remote indicators to the characteristics of the natural environment. Since any given point on the planet is characterized by a seasonally varying temperature, it is always possible to determine the sensitivity of a remote sensing indicator to changes in the environment that are not directly related to the absolute value of the indicator. Future studies are expected to examine susceptibility indices as a function of forest stand location and species, and to examine the length of spatial correlation of susceptibility indices, which may provide information on the possible extent of future insect outbreaks.
Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data
In this study, methods are proposed for analyzing the susceptibility of forest stands to attacks by forest insects on the basis of Earth remote sensing data. As an indicator of the state of forest stands, we proposed to use a parameter of the sensitivity of a vegetation index (normalized difference vegetation index; NDVI) during a vegetative period to changes in the radiative temperature of the territory (land surface temperature; LST) determined from satellite data of the Terra/Aqua system. The indicator was calculated as a spectrum of a response function in an integral equation linking changes of NDVI to those of LST. Backtesting was carried out using data from two outbreaks of the Siberian silk moth Dendrolimus sibiricus Tschetv. and outbreaks of the white mottled sawyer Monochamus urussovi Fischer and of the four-eyed fir bark beetle Polygraphus proximus Blandford in taiga forests of Krasnoyarsk Territory in Russia. In addition, the state of fir stands in the year 2023 was examined when damage to the forest stands was not yet noticeable, but Siberian silk moth adults were found in pheromone traps. It was shown that the proposed indicator of susceptibility of forest stands changed significantly 2–3 years before the pest outbreak in outbreak foci of the studied areas. Thus, the proposed indicator can be used to predict outbreaks of insect pests. The proposed approach differs from commonly used remote sensing methods in that, rather than using absolute values of remote indicators (such as, for example, NDVI), it focuses on indicators of the susceptibility of these remote indicators to the characteristics of the natural environment. Since any given point on the planet is characterized by a seasonally varying temperature, it is always possible to determine the sensitivity of a remote sensing indicator to changes in the environment that are not directly related to the absolute value of the indicator. Future studies are expected to examine susceptibility indices as a function of forest stand location and species, and to examine the length of spatial correlation of susceptibility indices, which may provide information on the possible extent of future insect outbreaks.
Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data
Anton Kovalev (Autor:in) / Olga Tarasova (Autor:in) / Vladislav Soukhovolsky (Autor:in) / Yulia Ivanova (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Analysis of Forest Stand Resistance to Insect Attack According to Remote Sensing Data
DOAJ | 2021
|Forest Insect Outbreak Dynamics: Fractal Properties, Viscous Fingers, and Holographic Principle
DOAJ | 2023
|Remote sensing of forest insect disturbances: Current state and future directions
Online Contents | 2017
|Quantifying insect-related forest mortality with the remote sensing of snow
Online Contents | 2017
|Mapping Tree Mortality Caused by Siberian Silkmoth Outbreak Using Sentinel-2 Remote Sensing Data
DOAJ | 2023
|