Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Association Analysis Using Apriori Algorithm of GANs-Expanded Student Performance Dataset
Traditional datasets are often limited, which can affect the accuracy of analyses. Additionally, the use of students’ real data raises privacy concerns. Generative Adversarial Networks (GANs) offer a solution by generating synthetic data that closely mirrors real-world data without compromising sensitive information. The research explored the application of GANs to enhance student performance datasets by addressing challenges related to data scarcity and privacy in educational research. In the research, GANs were utilized to generate synthetic student performance data. The accuracy of the data was assessed using Mean Absolute Percentage Error (MAPE), with values ranging from 0.004% to 19.92% across various statistical measures and means. These results demonstrated the reliability of the synthetic data, making it suitable for further analysis. The synthetic datasets were then analyzed using the Apriori algorithm, a well-known method in data mining for discovering significant patterns and relationships. A lower bound minimum support of 0.1 (10%) and a minimum confidence threshold of 0.6 (60%) were applied, ensuring the identification of meaningful associations. The analysis reveals important patterns and relationships among student attributes and behaviors. The research highlights the potential of GANs to advance data-driven educational research. By generating high-quality synthetic data, GANs allow researchers to conduct comprehensive analyses while addressing privacy concerns. The research contributes to the methodological approach to data augmentation in education, offering new opportunities for ethical and robust research.
Association Analysis Using Apriori Algorithm of GANs-Expanded Student Performance Dataset
Traditional datasets are often limited, which can affect the accuracy of analyses. Additionally, the use of students’ real data raises privacy concerns. Generative Adversarial Networks (GANs) offer a solution by generating synthetic data that closely mirrors real-world data without compromising sensitive information. The research explored the application of GANs to enhance student performance datasets by addressing challenges related to data scarcity and privacy in educational research. In the research, GANs were utilized to generate synthetic student performance data. The accuracy of the data was assessed using Mean Absolute Percentage Error (MAPE), with values ranging from 0.004% to 19.92% across various statistical measures and means. These results demonstrated the reliability of the synthetic data, making it suitable for further analysis. The synthetic datasets were then analyzed using the Apriori algorithm, a well-known method in data mining for discovering significant patterns and relationships. A lower bound minimum support of 0.1 (10%) and a minimum confidence threshold of 0.6 (60%) were applied, ensuring the identification of meaningful associations. The analysis reveals important patterns and relationships among student attributes and behaviors. The research highlights the potential of GANs to advance data-driven educational research. By generating high-quality synthetic data, GANs allow researchers to conduct comprehensive analyses while addressing privacy concerns. The research contributes to the methodological approach to data augmentation in education, offering new opportunities for ethical and robust research.
Association Analysis Using Apriori Algorithm of GANs-Expanded Student Performance Dataset
Rannie M. Sumacot (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Bridge Monitoring Data Analysis Based on Apriori Algorithm
Trans Tech Publications | 2013
|Bridge Monitoring Data Analysis Based on Apriori Algorithm
Tema Archiv | 2013
|Improved Apriori Algorithm Based on Compressing Transactional Matrix Multiplication
British Library Online Contents | 2011
|