Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modelling Water Quality Improvements in a South Korean Inter-Basin Water Transfer System
In this study, we investigated the feasibility of using constructed wetlands for non-point source pollution reduction. The effect of constructed wetlands in reducing suspended solids (SS) was analyzed using an integrated modeling system of watershed model (HSPF), reservoir model (CE-QUAL-W2), and stream model (EFDC) to investigate the behavior and accumulation of the pollution sources based on 2017 water quality data. The constructed wetlands significantly reduced the SS concentration by approximately 30%, and the other in-lake management practices (e.g., artificial floating islands and sedimentation basins) contributed an additional decrease of approximately 7%. Selective withdrawal decreased in the average SS concentration in the influents by ~10%; however, the effluents passing through the constructed wetlands showed only a slight difference of 1.9% in the average SS concentration. In order to meet the water quality standards, it was necessary to combine the constructed wetlands, in-lake water quality management, and selective withdrawal practices. Hence, it was determined that the model proposed herein is useful for estimating the quantitative effects of water quality management practices such as constructed wetlands, which provided practical guidelines for the application of further water quality management policies.
Modelling Water Quality Improvements in a South Korean Inter-Basin Water Transfer System
In this study, we investigated the feasibility of using constructed wetlands for non-point source pollution reduction. The effect of constructed wetlands in reducing suspended solids (SS) was analyzed using an integrated modeling system of watershed model (HSPF), reservoir model (CE-QUAL-W2), and stream model (EFDC) to investigate the behavior and accumulation of the pollution sources based on 2017 water quality data. The constructed wetlands significantly reduced the SS concentration by approximately 30%, and the other in-lake management practices (e.g., artificial floating islands and sedimentation basins) contributed an additional decrease of approximately 7%. Selective withdrawal decreased in the average SS concentration in the influents by ~10%; however, the effluents passing through the constructed wetlands showed only a slight difference of 1.9% in the average SS concentration. In order to meet the water quality standards, it was necessary to combine the constructed wetlands, in-lake water quality management, and selective withdrawal practices. Hence, it was determined that the model proposed herein is useful for estimating the quantitative effects of water quality management practices such as constructed wetlands, which provided practical guidelines for the application of further water quality management policies.
Modelling Water Quality Improvements in a South Korean Inter-Basin Water Transfer System
Hye Won Lee (Autor:in) / Bo-Min Yeom (Autor:in) / Jung Hyun Choi (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Inter-Basin Water Resources Management in South Africa
British Library Conference Proceedings | 2001
|Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin
DOAJ | 2020
|Water Allocation in Inter Basin Water Transfer with the Virtual Water Approach
British Library Conference Proceedings | 2013
|Water allocation between states in inter-basin water transfer in India
Online Contents | 2011
|Water allocation between states in inter-basin water transfer in India
Taylor & Francis Verlag | 2011
|