Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Dynamic investigations of various civil engineering structures due to ambient and mining tremors
The first part of the study deals with evaluation of dynamic characteristics of selected typical industrial facilities, such as the extraction steel tower, reinforced concrete tower skips. These structures are located in the coal mine area. The constructions of the test items are varied and complicated, which causes difficulties in the research in situ. In the investigation we used normal and emergency operation of lifting equipment, the effect of wind gusts and rhythmic man swaying. The second part of the study involves the determination of the dynamic characteristics of tailing dam. In this case mining tremors were used as the sources of vibration excitations. By using natural vibration excitation source it was possible to determine the lowest frequency of free vibration of the tailing dam. The third part of the paper focuses on the results of measurements of mine-induced ground vibrations and vibrations of residential buildings of various types. Typical one-family masonry houses as well as 5 and 12 storey reinforced prefabricated buildings were examined. The studies were conducted to determine the transmission of free-field vibrations to the building foundations. According to the significant differences between the simultaneously measured ground and building foundation vibrations, results of experimental tests obtained by means of response spectra are essential for the proper adoption of kinematic loads for dynamic models of these structures. The results of experimental studies were the basis for the verification of dynamic models of investigated structures.
Dynamic investigations of various civil engineering structures due to ambient and mining tremors
The first part of the study deals with evaluation of dynamic characteristics of selected typical industrial facilities, such as the extraction steel tower, reinforced concrete tower skips. These structures are located in the coal mine area. The constructions of the test items are varied and complicated, which causes difficulties in the research in situ. In the investigation we used normal and emergency operation of lifting equipment, the effect of wind gusts and rhythmic man swaying. The second part of the study involves the determination of the dynamic characteristics of tailing dam. In this case mining tremors were used as the sources of vibration excitations. By using natural vibration excitation source it was possible to determine the lowest frequency of free vibration of the tailing dam. The third part of the paper focuses on the results of measurements of mine-induced ground vibrations and vibrations of residential buildings of various types. Typical one-family masonry houses as well as 5 and 12 storey reinforced prefabricated buildings were examined. The studies were conducted to determine the transmission of free-field vibrations to the building foundations. According to the significant differences between the simultaneously measured ground and building foundation vibrations, results of experimental tests obtained by means of response spectra are essential for the proper adoption of kinematic loads for dynamic models of these structures. The results of experimental studies were the basis for the verification of dynamic models of investigated structures.
Dynamic investigations of various civil engineering structures due to ambient and mining tremors
Kuzniar Krystyna (Autor:in) / Tatara Tadeusz (Autor:in)
2015
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Type Analysis Mining Induced Tremors
British Library Conference Proceedings | 2000
|Coal bumps induced by mining tremors
British Library Conference Proceedings | 1993
|Surface tremors excited by mining works and their effects on structures
British Library Conference Proceedings | 2002
|Earthquakes, shocks and tremors in relation to coal mining
Engineering Index Backfile | 1926
|Dynamic response of a cable-stayed footbridge to high-energy mining tremors
DOAJ | 2019
|