Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Mycobiota of Fine Roots of Pseudotsuga menziesii Introduced to the Native Forest Environment
The mycobiota of the fine roots of Pseudotsuga menziesii were studied as a measure of the adaptation of this alien species to new soil and climatic conditions. We hypothesized that after approximately 130 years of growth in a given habitat, the fungal community colonizing the fine roots of introduced trees would resemble the biota of Pinus sylvestris and Fagus sylvatica in surrounding stands of similar age and site conditions. The genetic material isolated from the fine roots was subjected to metagenomic analysis. We recorded 33, 97 and 95 OTUs exclusively from root samples of Douglas fir, beech and pine, respectively; 124 were common to all sample types. The biota from the roots of P. menziesii featured a less diverse taxonomic composition and were characterized by the highest proportion of symbiotrophs (71.8%) versus saprothrophs (5.6%) and pathogens (0.24%). Some fungal taxa (19) in the roots of P. menziesii were common with the biota in the roots of other adjacent trees, while some (7) were unique to Douglas fir. Our results indicate a locally differentiated strategy of naturalness of fungi inhabiting soil and roots of P. menziesii, although 130 years have passed since the introduction of the species.
Mycobiota of Fine Roots of Pseudotsuga menziesii Introduced to the Native Forest Environment
The mycobiota of the fine roots of Pseudotsuga menziesii were studied as a measure of the adaptation of this alien species to new soil and climatic conditions. We hypothesized that after approximately 130 years of growth in a given habitat, the fungal community colonizing the fine roots of introduced trees would resemble the biota of Pinus sylvestris and Fagus sylvatica in surrounding stands of similar age and site conditions. The genetic material isolated from the fine roots was subjected to metagenomic analysis. We recorded 33, 97 and 95 OTUs exclusively from root samples of Douglas fir, beech and pine, respectively; 124 were common to all sample types. The biota from the roots of P. menziesii featured a less diverse taxonomic composition and were characterized by the highest proportion of symbiotrophs (71.8%) versus saprothrophs (5.6%) and pathogens (0.24%). Some fungal taxa (19) in the roots of P. menziesii were common with the biota in the roots of other adjacent trees, while some (7) were unique to Douglas fir. Our results indicate a locally differentiated strategy of naturalness of fungi inhabiting soil and roots of P. menziesii, although 130 years have passed since the introduction of the species.
Mycobiota of Fine Roots of Pseudotsuga menziesii Introduced to the Native Forest Environment
Marta Damszel (Autor:in) / Hanna Szmidla (Autor:in) / Katarzyna Sikora (Autor:in) / Agata Młodzińska (Autor:in) / Sławomir Piętka (Autor:in) / Zbigniew Sierota (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Tables de production relatives au douglas (Pseudotsuga menziesii (Mirb.) Franco)
Katalog Agrar | 1996
|Microsites Influence the Light Response of Young Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco)
DOAJ | 2021
|