Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Enhanced Swine Wastewater Treatment by Constructed Wetland—Microbial Fuel Cell Systems
This paper studies the effects of planting plants and coupled microbial fuel cells (MFCs) on the decontamination capacity and purification mechanism of constructed wetlands (CWs). Four systems were set, namely CW-without plants (A1), CW-with plants (A2), CW-MFC-without plants (A3) and CW-MFC-with plants (A4). The daily reductions per unit area of chemical oxygen demand (COD) were 48.72 ± 5.42, 51.26 ± 4.10, 53.49 ± 5.44 and 58.54 ± 4.16 g·(d·m2)−1, respectively. The daily reductions per unit area of nitrogen (N) were 11.89 ± 0.73, 12.38 ± 0.76, 12.24 ± 0.79 and 13.61 ± 1.07 g·(d·m2)−1, respectively. After studying the pollutant removal efficiency, it was found that the unit area of A4 removes the highest number of pollutants, improving the area efficiency of the wetland system and fundamentally alleviating the disadvantage of the large land footprint of wetland processes. The average output voltages of A3 and A4 were 568.29 and 717.46 mV, respectively, and the maximum power densities were 4.59 and 15.87 mW/m3, respectively. In addition, after high-throughput analysis of microbial samples, anaerobic ammonia oxidising (anammox) bacteria were found to remove N from the system in the anaerobic anode region.
Enhanced Swine Wastewater Treatment by Constructed Wetland—Microbial Fuel Cell Systems
This paper studies the effects of planting plants and coupled microbial fuel cells (MFCs) on the decontamination capacity and purification mechanism of constructed wetlands (CWs). Four systems were set, namely CW-without plants (A1), CW-with plants (A2), CW-MFC-without plants (A3) and CW-MFC-with plants (A4). The daily reductions per unit area of chemical oxygen demand (COD) were 48.72 ± 5.42, 51.26 ± 4.10, 53.49 ± 5.44 and 58.54 ± 4.16 g·(d·m2)−1, respectively. The daily reductions per unit area of nitrogen (N) were 11.89 ± 0.73, 12.38 ± 0.76, 12.24 ± 0.79 and 13.61 ± 1.07 g·(d·m2)−1, respectively. After studying the pollutant removal efficiency, it was found that the unit area of A4 removes the highest number of pollutants, improving the area efficiency of the wetland system and fundamentally alleviating the disadvantage of the large land footprint of wetland processes. The average output voltages of A3 and A4 were 568.29 and 717.46 mV, respectively, and the maximum power densities were 4.59 and 15.87 mW/m3, respectively. In addition, after high-throughput analysis of microbial samples, anaerobic ammonia oxidising (anammox) bacteria were found to remove N from the system in the anaerobic anode region.
Enhanced Swine Wastewater Treatment by Constructed Wetland—Microbial Fuel Cell Systems
Yun Zhang (Autor:in) / Feng Liu (Autor:in) / Yidong Lin (Autor:in) / Lei Sun (Autor:in) / Xinru Guo (Autor:in) / Shuai Yang (Autor:in) / Jinlong He (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Swine Wastewater Treatment in Constructed Wetland Systems: Hydraulic and Kinetic Modeling
DOAJ | 2022
|Use of a Constructed Wetland for Post-Treatment of Swine Wastewater
British Library Online Contents | 2008
|DOAJ | 2024
|Constructed Wetland-Microbial Fuel Cells for Sustainable Greywater Treatment
DOAJ | 2018
|