Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices
Forecasting commodities prices on vividly changing markets is a hard problem to tackle. However, being able to determine important price predictors in a time-varying setting is crucial for sustainability initiatives. For example, the 2000s commodities boom gave rise to questioning whether commodities markets become over-financialized. In case of agricultural commodities, it was questioned if the speculative pressures increase food prices. Recently, some newly proposed Bayesian model combination scheme has been proposed, i.e., Dynamic Model Averaging (DMA). This method has already been applied with success in certain markets. It joins together uncertainty about the model and explanatory variables and a time-varying parameters approach. It can also capture structural breaks and respond to market disturbances. Secondly, it can deal with numerous explanatory variables in a data-rich environment. Similarly, like Bayesian Model Averaging (BMA), Dynamic Model Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model (MED) start from Time-Varying Parameters’ (TVP) regressions. All of these methods were applied to 69 spot commodities prices. The period between Dec 1983 and Oct 2017 was analysed. In approximately 80% of cases, according to the Diebold–Mariano test, DMA produced statistically significant more accurate forecast than benchmark forecasts (like the naive method or ARIMA). Moreover, amongst all the considered model types, DMA was in 22% of cases the most accurate one (significantly). MED was most often minimising the forecast errors (28%). However, in the text, it is clarified that this was due to some specific initial parameters setting. The second “best” model type was MED, meaning that, in the case of model selection, relying on the highest posterior probability is not always preferable.
Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices
Forecasting commodities prices on vividly changing markets is a hard problem to tackle. However, being able to determine important price predictors in a time-varying setting is crucial for sustainability initiatives. For example, the 2000s commodities boom gave rise to questioning whether commodities markets become over-financialized. In case of agricultural commodities, it was questioned if the speculative pressures increase food prices. Recently, some newly proposed Bayesian model combination scheme has been proposed, i.e., Dynamic Model Averaging (DMA). This method has already been applied with success in certain markets. It joins together uncertainty about the model and explanatory variables and a time-varying parameters approach. It can also capture structural breaks and respond to market disturbances. Secondly, it can deal with numerous explanatory variables in a data-rich environment. Similarly, like Bayesian Model Averaging (BMA), Dynamic Model Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model (MED) start from Time-Varying Parameters’ (TVP) regressions. All of these methods were applied to 69 spot commodities prices. The period between Dec 1983 and Oct 2017 was analysed. In approximately 80% of cases, according to the Diebold–Mariano test, DMA produced statistically significant more accurate forecast than benchmark forecasts (like the naive method or ARIMA). Moreover, amongst all the considered model types, DMA was in 22% of cases the most accurate one (significantly). MED was most often minimising the forecast errors (28%). However, in the text, it is clarified that this was due to some specific initial parameters setting. The second “best” model type was MED, meaning that, in the case of model selection, relying on the highest posterior probability is not always preferable.
Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices
Krzysztof Drachal (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
commodity price forecasting , commodity price predictability , dynamic model averaging , forecast combination , model averaging , model selection , model uncertainty , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes
DOAJ | 2019
|Agricultural Commodities and Crude Oil Prices: An Empirical Investigation of Their Relationship
DOAJ | 2018
|The Maritime Bulk Commodities Simulation Model
NTIS | 1975
Bayesian Analysis of Energy Prices on Irrigation
ASCE | 2021
|