Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches
The purpose of this study is to analyze different types of supply chain uncertainties and suggest strategies to deal with unexpected contingencies to deliver superior operational performance (OP) using symmetrical and asymmetrical modeling approaches. The data were collected through a survey given to 146 supply chain managers within the fast moving consumer goods industry in Thailand. Symmetrical modeling is applied via partial least squares structural equation modeling (PLS-SEM) in order to assess the theoretical relationships among the latent variables, while asymmetrical modeling is applied via fuzzy set qualitative comparative analysis (fsQCA) to emphasize their combinatory causal relation. The empirical results support the theory by highlighting the mediating effect of supply chain strategy (SCS) in the relation between supply chain uncertainty (SCU) and firms’ OP and, hence, deliver business sustainability for the firms, demonstrating that the choice of SCS should not be an “either-or” decision. This research contributes by providing an illustration of a PLS-SEM and fsQCA based estimation for the rapidly emerging field of sustainable supply chain management. This study provides empirical support for resource dependence theory (RDT) in explaining the relation between SCU and SCS, which leads to sustainable OP. From a methodological standpoint, this study also illustrates predictive validation testing of models using holdout samples and testing for causal asymmetry.
Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches
The purpose of this study is to analyze different types of supply chain uncertainties and suggest strategies to deal with unexpected contingencies to deliver superior operational performance (OP) using symmetrical and asymmetrical modeling approaches. The data were collected through a survey given to 146 supply chain managers within the fast moving consumer goods industry in Thailand. Symmetrical modeling is applied via partial least squares structural equation modeling (PLS-SEM) in order to assess the theoretical relationships among the latent variables, while asymmetrical modeling is applied via fuzzy set qualitative comparative analysis (fsQCA) to emphasize their combinatory causal relation. The empirical results support the theory by highlighting the mediating effect of supply chain strategy (SCS) in the relation between supply chain uncertainty (SCU) and firms’ OP and, hence, deliver business sustainability for the firms, demonstrating that the choice of SCS should not be an “either-or” decision. This research contributes by providing an illustration of a PLS-SEM and fsQCA based estimation for the rapidly emerging field of sustainable supply chain management. This study provides empirical support for resource dependence theory (RDT) in explaining the relation between SCU and SCS, which leads to sustainable OP. From a methodological standpoint, this study also illustrates predictive validation testing of models using holdout samples and testing for causal asymmetry.
Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches
Mohammad Asif Salam (Autor:in) / Murad Ali (Autor:in) / Konan Anderson Seny Kan (Autor:in)
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Braced Frame Symmetrical and Asymmetrical Friction Connection Performance
Trans Tech Publications | 2018
|Braced Frame Symmetrical and Asymmetrical Friction Connection Performance
British Library Conference Proceedings | 2018
|Problems with analyzing operational data uncertainty
Springer Verlag | 2010
|Problems with analyzing operational data uncertainty
British Library Online Contents | 2010
|RURAL WATER SUPPLY: VOLUNTEERS DELIVER A SUSTAINABLE SOLUTION
British Library Online Contents | 2010
|