Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
New Construction Technology of a Shallow Tunnel in Boulder-Cobble Mixed Grounds
As a typical granular bulk medium, problems are common in boulder-cobble mixed grounds, such as easy collapse and instability and difficult effective support for large-section tunnel excavation. Tunnels constructed in BCM grounds are rare still, and there is a big gap between the design and construction of tunnels. Based on the Nianggaicun highway tunnel crossing the BCM grounds, the construction technology of tunnel in BCM grounds is studied by means of literature investigation and field survey. Here are the main conclusions: the overall deformation of surrounding rock is quite small; the pressure distribution of surrounding rock is small and loose pressure is dominant, and the safety reserve of secondary lining is large. The deformation process of surrounding rock concentrates on the construction stage. During the construction process, there are many problems, such as serious overexcavation, difficulty of bolt penetration, and continuous rock fall. In this paper, a three-bench complementary cyclic excavation method is proposed, which replaces the original CD and CRD methods. Meanwhile, the supporting system is optimized. The results show that the disturbance of surrounding rock is reduced, while the safety of construction process and the reliability of structure are increased. The new excavation method and optimized supporting system are expected to fill the gap between design and construction of tunnel in BCM grounds and provide reference for construction of such tunnels in the future.
New Construction Technology of a Shallow Tunnel in Boulder-Cobble Mixed Grounds
As a typical granular bulk medium, problems are common in boulder-cobble mixed grounds, such as easy collapse and instability and difficult effective support for large-section tunnel excavation. Tunnels constructed in BCM grounds are rare still, and there is a big gap between the design and construction of tunnels. Based on the Nianggaicun highway tunnel crossing the BCM grounds, the construction technology of tunnel in BCM grounds is studied by means of literature investigation and field survey. Here are the main conclusions: the overall deformation of surrounding rock is quite small; the pressure distribution of surrounding rock is small and loose pressure is dominant, and the safety reserve of secondary lining is large. The deformation process of surrounding rock concentrates on the construction stage. During the construction process, there are many problems, such as serious overexcavation, difficulty of bolt penetration, and continuous rock fall. In this paper, a three-bench complementary cyclic excavation method is proposed, which replaces the original CD and CRD methods. Meanwhile, the supporting system is optimized. The results show that the disturbance of surrounding rock is reduced, while the safety of construction process and the reliability of structure are increased. The new excavation method and optimized supporting system are expected to fill the gap between design and construction of tunnel in BCM grounds and provide reference for construction of such tunnels in the future.
New Construction Technology of a Shallow Tunnel in Boulder-Cobble Mixed Grounds
Tong Liu (Autor:in) / Yujian Zhong (Autor:in) / Zhihua Feng (Autor:in) / Wei Xu (Autor:in) / Feiting Song (Autor:in) / Chenghan Li (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Flow Resistance in Cobble and Boulder Riverbeds
ASCE | 2021
|Study on Directional Control Curtain Grouting Technology in Boulder-Cobble Strata
DOAJ | 2021
|Construction of Cobble Mountain diversion tunnel
Engineering Index Backfile | 1933
|