Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries
The application of circularity strategies to improve resource use and recovery should be considered with their potential impacts on the environment. Their effectiveness could be evaluated by combining the material circularity indicator (MCI) and life cycle assessment (LCA) methods. Environmental trade-offs may be underestimated for some strategies given that the loss of material quality with recycling has not been captured within the methodological framework of MCI. The current study demonstrates how significantly this limitation may influence the trade-offs in a case study. The methods are applied to several scenarios for the circularity improvement of alkaline batteries. The joint interpretation of MCI and LCA scores is carried out using waterfall charts and normalized indicator scores. Results suggest that improving circularity generally reduces environmental impacts, although there is large variability among two sets of values. For example, an increase of MCI score by 14% for two recycling scenarios translates to a small reduction of impacts in one case (0.06–1.64%) and a large reduction in another (9.84–56.82%). Observations from the case study are used to discuss the design and scope of MCI use and its combining with LCA. Lastly, we draw on the opportunities of the new comparative approach.
Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries
The application of circularity strategies to improve resource use and recovery should be considered with their potential impacts on the environment. Their effectiveness could be evaluated by combining the material circularity indicator (MCI) and life cycle assessment (LCA) methods. Environmental trade-offs may be underestimated for some strategies given that the loss of material quality with recycling has not been captured within the methodological framework of MCI. The current study demonstrates how significantly this limitation may influence the trade-offs in a case study. The methods are applied to several scenarios for the circularity improvement of alkaline batteries. The joint interpretation of MCI and LCA scores is carried out using waterfall charts and normalized indicator scores. Results suggest that improving circularity generally reduces environmental impacts, although there is large variability among two sets of values. For example, an increase of MCI score by 14% for two recycling scenarios translates to a small reduction of impacts in one case (0.06–1.64%) and a large reduction in another (9.84–56.82%). Observations from the case study are used to discuss the design and scope of MCI use and its combining with LCA. Lastly, we draw on the opportunities of the new comparative approach.
Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries
Edis Glogic (Autor:in) / Guido Sonnemann (Autor:in) / Steven B. Young (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2025
|Prioritization of strategies for urban water circular economy using water circularity indicator
DOAJ | 2024
|