Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Improvement of Pollutant Removal in the Ferric-Carbon Micro-Electrolysis Constructed Wetland by Partial Aeration
Subsurface flow constructed wetland (SSFCW) has been applied for wastewater treatment for several decades. In recent years, the combination of ferric-carbon micro-electrolysis (Fe/C-M/E) and SSFCW was proven to be an effective method of multifarious sewage treatment. However, Ferric substrate created a relatively reductive condition, decreased the oxidation efficiency of NH4+-N, and blocked the following denitrification process, which led to the low removal efficiencies of NH4+-N and total nitrogen (TN). In this study, partial aeration was introduced into the ferric-carbon micro-electrolysis SSFCW (Fe/C-M/E CW) system to solve the problem above. The water quality and nitrogen-related functional genes of bacteria on the surface of substrate were measured for mechanism exploration. The results showed that, the removal efficiencies of NH4+-N and total phosphorus (TP) in an aerated Fe/C-M/E CW system were 96.97% ± 6.06% and 84.62% ± 8.47%, much higher than 43.33% ± 11.27% and 60.16% ± 2.95% in the unaerated Fe/C-M/E CW systems. However, the TN removal in Fe/C-M/E CW system was not enhanced by aeration, which could be optimized by extending more anoxic section for denitrification.
The Improvement of Pollutant Removal in the Ferric-Carbon Micro-Electrolysis Constructed Wetland by Partial Aeration
Subsurface flow constructed wetland (SSFCW) has been applied for wastewater treatment for several decades. In recent years, the combination of ferric-carbon micro-electrolysis (Fe/C-M/E) and SSFCW was proven to be an effective method of multifarious sewage treatment. However, Ferric substrate created a relatively reductive condition, decreased the oxidation efficiency of NH4+-N, and blocked the following denitrification process, which led to the low removal efficiencies of NH4+-N and total nitrogen (TN). In this study, partial aeration was introduced into the ferric-carbon micro-electrolysis SSFCW (Fe/C-M/E CW) system to solve the problem above. The water quality and nitrogen-related functional genes of bacteria on the surface of substrate were measured for mechanism exploration. The results showed that, the removal efficiencies of NH4+-N and total phosphorus (TP) in an aerated Fe/C-M/E CW system were 96.97% ± 6.06% and 84.62% ± 8.47%, much higher than 43.33% ± 11.27% and 60.16% ± 2.95% in the unaerated Fe/C-M/E CW systems. However, the TN removal in Fe/C-M/E CW system was not enhanced by aeration, which could be optimized by extending more anoxic section for denitrification.
The Improvement of Pollutant Removal in the Ferric-Carbon Micro-Electrolysis Constructed Wetland by Partial Aeration
Cheng Dong (Autor:in) / Mengting Li (Autor:in) / Lin-Lan Zhuang (Autor:in) / Jian Zhang (Autor:in) / Youhao Shen (Autor:in) / Xiangzheng Li (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2024
|DOAJ | 2024
|Phosphorous removal in constructed wetland systems
British Library Conference Proceedings | 1999
|