Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Changes in Soil Aggregate Fractions, Stability, and Associated Organic Carbon and Nitrogen in Different Land Use Types in the Loess Plateau, China
Rational land use can enhance soil nutrient sequestration and control erosion, but the mechanisms of the ecological restoration of soil-aggregate-associated carbon and nitrogen are still not well understood. A large-scale ecological restoration program was launched in the Loess Plateau during the 1990s. The ecological restoration programs involved converting slope farmland to woodland, grassland, shrub land, and terrace. We studied their effects in relation to cultivated land as control on soil aggregate structure and stability and their associated organic carbon and total nitrogen contents to 60 cm soil depth in the Loess Plateau. Our results indicate that the restoration practices reduced soil aggregate fragmentation, increased soil structure stability, and transformed micro-aggregates into small and large aggregates. Comparing with the soil aggregate >0.25 mm in cultivated land, the amount in woodland, grassland, shrub land and terrace increased by 71%, 66%, 46%, and 35%, respectively, which improved soil health overall. The mean weight diameter of aggregate indicates that soil aggregate stability (SAS) increased and soil hydraulic erosion resistance improved. In conclusion, ecological restoration directly or indirectly affected SAS through the influence of soil organic carbon and total nitrogen in different soil layers. Results of this study provide a scientific reference for understanding stabilization of soil aggregate and regional restoration.
Changes in Soil Aggregate Fractions, Stability, and Associated Organic Carbon and Nitrogen in Different Land Use Types in the Loess Plateau, China
Rational land use can enhance soil nutrient sequestration and control erosion, but the mechanisms of the ecological restoration of soil-aggregate-associated carbon and nitrogen are still not well understood. A large-scale ecological restoration program was launched in the Loess Plateau during the 1990s. The ecological restoration programs involved converting slope farmland to woodland, grassland, shrub land, and terrace. We studied their effects in relation to cultivated land as control on soil aggregate structure and stability and their associated organic carbon and total nitrogen contents to 60 cm soil depth in the Loess Plateau. Our results indicate that the restoration practices reduced soil aggregate fragmentation, increased soil structure stability, and transformed micro-aggregates into small and large aggregates. Comparing with the soil aggregate >0.25 mm in cultivated land, the amount in woodland, grassland, shrub land and terrace increased by 71%, 66%, 46%, and 35%, respectively, which improved soil health overall. The mean weight diameter of aggregate indicates that soil aggregate stability (SAS) increased and soil hydraulic erosion resistance improved. In conclusion, ecological restoration directly or indirectly affected SAS through the influence of soil organic carbon and total nitrogen in different soil layers. Results of this study provide a scientific reference for understanding stabilization of soil aggregate and regional restoration.
Changes in Soil Aggregate Fractions, Stability, and Associated Organic Carbon and Nitrogen in Different Land Use Types in the Loess Plateau, China
Yi Zhang (Autor:in) / Peng Li (Autor:in) / Xiaojun Liu (Autor:in) / Lie Xiao (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Soil Aggregate Stability and Carbon Density in Three Plantations in the Loess Plateau, China
DOAJ | 2022
|DOAJ | 2024
|Elsevier | 2024
|Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China
DOAJ | 2019
|