Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Understanding the Challenges of Hydrological Analysis at Bridge Collapse Sites
There is a crucial need for modeling hydrological extremes in order to optimize hydraulic system safety. It is often perceived that the best-fitted distribution accurately captures the intricacies of the hydrological extremes, particularly for the least disturbed watersheds. Thirty collapse sites with the least disturbed watersheds within the Appalachian Highland region in the U.S. are identified and used to test this perception. Goodness-of-fit tests, time series analysis, and comparison of predictor variables are carried out to find out the best-fitted distribution, identify trends and seasonal variation, and assess site variability. The study results are found to be inconclusive and sometimes contradictory; sometimes even complex distribution models do not provide better results. For most sites, the historic peak flow data are best-fitted with multiple distributions, including heavy and light tails. For monthly flow data, seasonal variation and trend cannot be categorized since no definitive, distinct tendency can be identified. When comparing sites best-fitted with a single distribution to sites best-fitted with multiple distributions, significant differences in certain geospatial characteristics are identified. However, these characteristics at the watershed scale are claimed to be less important in predicting the behavior of a flood event. All of these results capture the difficulties and inconsistencies in interpreting the results of hydrologic analysis, potentially reducing the robustness of the hydrologic tools used in the design and risk assessment of bridges.
Understanding the Challenges of Hydrological Analysis at Bridge Collapse Sites
There is a crucial need for modeling hydrological extremes in order to optimize hydraulic system safety. It is often perceived that the best-fitted distribution accurately captures the intricacies of the hydrological extremes, particularly for the least disturbed watersheds. Thirty collapse sites with the least disturbed watersheds within the Appalachian Highland region in the U.S. are identified and used to test this perception. Goodness-of-fit tests, time series analysis, and comparison of predictor variables are carried out to find out the best-fitted distribution, identify trends and seasonal variation, and assess site variability. The study results are found to be inconclusive and sometimes contradictory; sometimes even complex distribution models do not provide better results. For most sites, the historic peak flow data are best-fitted with multiple distributions, including heavy and light tails. For monthly flow data, seasonal variation and trend cannot be categorized since no definitive, distinct tendency can be identified. When comparing sites best-fitted with a single distribution to sites best-fitted with multiple distributions, significant differences in certain geospatial characteristics are identified. However, these characteristics at the watershed scale are claimed to be less important in predicting the behavior of a flood event. All of these results capture the difficulties and inconsistencies in interpreting the results of hydrologic analysis, potentially reducing the robustness of the hydrologic tools used in the design and risk assessment of bridges.
Understanding the Challenges of Hydrological Analysis at Bridge Collapse Sites
Fahmidah U. Ashraf (Autor:in) / Mohammad H. Islam (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
I35W Bridge collapse: Lessons learned and challenges revealed
Online Contents | 2011
|I35W Bridge collapse: Lessons learned and challenges revealed
IOS Press | 2011
I35W Bridge Collapse: Lessons Learned and Challenges Revealed
British Library Conference Proceedings | 2011
|