Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Simplified Analysis of Thermal Cracks in Low-Heat Portland Cement Concrete
This article introduces some experimental data from the compression test, the tension test, and the temperature stress test machine (TSTM) test for low-heat Portland (LHP) cement concrete with different fly ash (FA) content. With the proposed equations, the thermal cracks can be predicted with the TSTM test along with the mechanical properties. The higher FA content exhibits a lower hydration degree and a smaller adiabatic temperature rise. Although the FA content decreases the hydration heat and the strength at an early age, there are few influences on the relational expression between compressive strength and tensile strength. The proposed equations can also be applied to estimate the thermal cracks risk in LHP cement concrete. The cracking stress of LHP cement concrete in the temperature stress test is not only related to the tensile stress history but also connected to the compressive stress history. Considering the strength history, an analytical method for evaluating the cracking temperature difference was proposed. With the proposed method, only compressive strength can be used to estimate the thermal cracks risk for LHP cement concrete at different ages. It greatly simplifies the evaluation method of thermal cracks in low-heat Portland cement concrete. Furthermore, this evaluation method can also be applied to other types of concrete.
Simplified Analysis of Thermal Cracks in Low-Heat Portland Cement Concrete
This article introduces some experimental data from the compression test, the tension test, and the temperature stress test machine (TSTM) test for low-heat Portland (LHP) cement concrete with different fly ash (FA) content. With the proposed equations, the thermal cracks can be predicted with the TSTM test along with the mechanical properties. The higher FA content exhibits a lower hydration degree and a smaller adiabatic temperature rise. Although the FA content decreases the hydration heat and the strength at an early age, there are few influences on the relational expression between compressive strength and tensile strength. The proposed equations can also be applied to estimate the thermal cracks risk in LHP cement concrete. The cracking stress of LHP cement concrete in the temperature stress test is not only related to the tensile stress history but also connected to the compressive stress history. Considering the strength history, an analytical method for evaluating the cracking temperature difference was proposed. With the proposed method, only compressive strength can be used to estimate the thermal cracks risk for LHP cement concrete at different ages. It greatly simplifies the evaluation method of thermal cracks in low-heat Portland cement concrete. Furthermore, this evaluation method can also be applied to other types of concrete.
Simplified Analysis of Thermal Cracks in Low-Heat Portland Cement Concrete
Longlong Liu (Autor:in) / Shangchuan Zhao (Autor:in) / Jianda Xin (Autor:in) / Zhenhong Wang (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Finite-Element Analysis of Portland Cement Concrete Pavements with Cracks
British Library Online Contents | 1997
|Finite-Element Analysis of Portland Cement Concrete Pavements with Cracks
British Library Conference Proceedings | 1997
|Method for repairing concrete cracks by grouting Portland cement
Europäisches Patentamt | 2021
|Simplified method for proportioning of Portland cement in concrete
Engineering Index Backfile | 1941
|