Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Regional Adaptability of Global and Regional Hydrological Forecast System
Our paper aims to improve flood forecasting by establishing whether a global hydrological forecast system could be used as an alternative to a regional system, or whether it could provide additional information. This paper was based on the operational Global Flood Awareness System (GloFAS) of the European Commission Copernicus Emergency Management Service, as well as on a regional hydrological forecast system named RHFS, which was created with observations recorded in the Wangjiaba river basin in China. We compared the discharge simulations of the two systems, and tested the influence of input. Then the discharge ensemble forecasts were evaluated for lead times of 1–7 d, and the impact on the forecasts of errors in initialization and modelling were considered. We also used quantile mapping (QM) to post-process the discharge simulations and forecasts. The results showed: (1) GloFAS (KGE of 0.54) had a worse discharge simulation than RHFS (KGE of 0.88), mainly because of the poor quality of the input; (2) the average forecast skill of GloFAS (CRPSS about 0.2) was inferior to that of RHFS (CRPSS about 0.6), because of the errors in the initialization and the model, however, GloFAS had a higher forecast quality than RHFS at high flow with longer lead times; (3) QM performed well at eliminating errors in input, the model, and the initialization.
Regional Adaptability of Global and Regional Hydrological Forecast System
Our paper aims to improve flood forecasting by establishing whether a global hydrological forecast system could be used as an alternative to a regional system, or whether it could provide additional information. This paper was based on the operational Global Flood Awareness System (GloFAS) of the European Commission Copernicus Emergency Management Service, as well as on a regional hydrological forecast system named RHFS, which was created with observations recorded in the Wangjiaba river basin in China. We compared the discharge simulations of the two systems, and tested the influence of input. Then the discharge ensemble forecasts were evaluated for lead times of 1–7 d, and the impact on the forecasts of errors in initialization and modelling were considered. We also used quantile mapping (QM) to post-process the discharge simulations and forecasts. The results showed: (1) GloFAS (KGE of 0.54) had a worse discharge simulation than RHFS (KGE of 0.88), mainly because of the poor quality of the input; (2) the average forecast skill of GloFAS (CRPSS about 0.2) was inferior to that of RHFS (CRPSS about 0.6), because of the errors in the initialization and the model, however, GloFAS had a higher forecast quality than RHFS at high flow with longer lead times; (3) QM performed well at eliminating errors in input, the model, and the initialization.
Regional Adaptability of Global and Regional Hydrological Forecast System
Han Wang (Autor:in) / Ping-an Zhong (Autor:in) / Ervin Zsoter (Autor:in) / Christel Prudhomme (Autor:in) / Florian Pappenberger (Autor:in) / Bin Xu (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydrological forecast at ungauged urban catchments, using regional equations
British Library Conference Proceedings | 1999
|Household Survey Design: Regional Applicability and Adaptability
British Library Online Contents | 2007
|Regional Adaptability Analysis of Solar Roof Utilization Technologies in China
BASE | 2022
|Forecast: the regional community of the future
Engineering Index Backfile | 1927
|