Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Forest fire effects on stream water quality at continental scales: a meta-analysis
Forested watersheds supply over two thirds of the world’s drinking water. The last decade has seen an increase in the frequency and intensity of wildfires that is threatening these source watersheds, and necessitating more expensive water treatment to address degrading water quality. Given increasing wildfire frequency in a changing climate, it is important to understand the magnitude of water quality impacts following fire. Here, we conducted a meta-analysis to explore post-fire changes in the concentrations of nitrogen (N) and phosphorus (P) species, dissolved organic carbon, and total suspended sediments in 121 sites around the world. Changes were documented over each study’s respective duration, which for 90% of sites was five years or fewer. We find concurrent increases in C, N and P species, highlighting a tight coupling between biogeochemical cycles in post-fire landscapes. We find that fire alters N and P speciation, with median increases of 40%–60% in the proportion of soluble inorganic N and P relative to total N and P. We also found that fire decreases C:N and C:P ratios, with median decreases ranging from 60% to 70%. Finally we observe a ‘hockey stick’-like response in changes to the concentration distribution, where increases in the highest concentration ranges are much greater than increases at lower concentrations. Our study documents strong heterogeneity in responses of water quality to wildfire that have been unreported so far in the literature.
Forest fire effects on stream water quality at continental scales: a meta-analysis
Forested watersheds supply over two thirds of the world’s drinking water. The last decade has seen an increase in the frequency and intensity of wildfires that is threatening these source watersheds, and necessitating more expensive water treatment to address degrading water quality. Given increasing wildfire frequency in a changing climate, it is important to understand the magnitude of water quality impacts following fire. Here, we conducted a meta-analysis to explore post-fire changes in the concentrations of nitrogen (N) and phosphorus (P) species, dissolved organic carbon, and total suspended sediments in 121 sites around the world. Changes were documented over each study’s respective duration, which for 90% of sites was five years or fewer. We find concurrent increases in C, N and P species, highlighting a tight coupling between biogeochemical cycles in post-fire landscapes. We find that fire alters N and P speciation, with median increases of 40%–60% in the proportion of soluble inorganic N and P relative to total N and P. We also found that fire decreases C:N and C:P ratios, with median decreases ranging from 60% to 70%. Finally we observe a ‘hockey stick’-like response in changes to the concentration distribution, where increases in the highest concentration ranges are much greater than increases at lower concentrations. Our study documents strong heterogeneity in responses of water quality to wildfire that have been unreported so far in the literature.
Forest fire effects on stream water quality at continental scales: a meta-analysis
Tyler B Hampton (Autor:in) / Simon Lin (Autor:in) / Nandita B Basu (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Predicting forest fire effects at landscape scales
British Library Conference Proceedings | 1999
|DOAJ | 2022
|The Effects of a Small Forest Fire on Water Quality in Capilano Watershed
British Library Conference Proceedings | 1999
|