Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis
The evolution of innovative construction technology and automation has rapidly transformed the construction industry over the last few decades. However, selecting the most efficient and sustainable construction technology for high-rise building construction is a critical factor in completing the project successfully. This requires a multiple-judgment-decision process relevant to cost, time, environment, sustainability, quality, etc. Thus, this research aims to identify the most suitable sustainable construction method for high-rise building construction in Australia. Three construction methods (i.e., automated building construction, aluminium formwork construction, and off-site construction) and robotic construction technology are reviewed in terms of economic, equity and environmental performance. A detailed multi-criteria analysis is conducted concerning the weighting calculated for each construction method, which aids in recommending a sustainable and cost-effective method. The analytical hierarchy process (AHP) is used as a multi-attribute decision-making tool to determine the weighting factors. The results show that the off-site construction method and robotic construction technique significantly improve the construction performance of high-rise construction in Australia. However, the finding is based on data obtained from a limited number of experts. Thus, a detailed case study with a greater number of expert opinions is needed to ensure the significance of the finding. However, the AHP-based approach method can be used to select sustainable construction alternatives for high-rise buildings.
Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis
The evolution of innovative construction technology and automation has rapidly transformed the construction industry over the last few decades. However, selecting the most efficient and sustainable construction technology for high-rise building construction is a critical factor in completing the project successfully. This requires a multiple-judgment-decision process relevant to cost, time, environment, sustainability, quality, etc. Thus, this research aims to identify the most suitable sustainable construction method for high-rise building construction in Australia. Three construction methods (i.e., automated building construction, aluminium formwork construction, and off-site construction) and robotic construction technology are reviewed in terms of economic, equity and environmental performance. A detailed multi-criteria analysis is conducted concerning the weighting calculated for each construction method, which aids in recommending a sustainable and cost-effective method. The analytical hierarchy process (AHP) is used as a multi-attribute decision-making tool to determine the weighting factors. The results show that the off-site construction method and robotic construction technique significantly improve the construction performance of high-rise construction in Australia. However, the finding is based on data obtained from a limited number of experts. Thus, a detailed case study with a greater number of expert opinions is needed to ensure the significance of the finding. However, the AHP-based approach method can be used to select sustainable construction alternatives for high-rise buildings.
Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis
Satheeskumar Navaratnam (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Europäisches Patentamt | 2020
|Selecting suitable procurement system for steel building construction
Emerald Group Publishing | 2020
|One of the criteria for selecting a contractor for high-rise construction
DOAJ | 2018
|Building structure suitable for building high-rise building with multi-story building
Europäisches Patentamt | 2021
|